LNK454/456-458/460 LinkSwitch-PL 系列

具 TRIAC 調光、Single-Stage PFC 和定電流控制的 LED 驅動器 IC,適用於非隔離應用

產品特色

大幅簡化離線 LED 驅動器

- 不閃爍、透過相位控制的 TRIAC 調光
- Single stage 功率因數修正且精準的定電流 (CC) 輸出
- 所需元件極少,具小型非電解大電容,可作為小型替代照明燈設計
- 小型 SO8、eSOP 與 eDIP 封裝
- 完全消除控制迴路補償

進階效能特色

- 已針對非隔離式返馳式設計進行最佳化
- 頻率抖動可大幅縮減 EMI 濾波器尺寸和成本
- 低消耗直接感測 LED 電流

進階保護和安全功能

- 針對異常低輸出功率進行週期跳離調節,以箝制峰值輸出電流 的輸送
- 725 V 整合功率 MOSFET 提供小型大電容,並發揮最大功率
- 短路、過載、開放式回授與輸出過壓保護
- 磁滯回復過温保護
- 在 PCB 板上和封裝上,符合汲極 (DRAIN) 與所有其他接腳之間的高壓沿面距離

EcoSmart™ - 節能

- 高功率因數可將每輸入 VA 獲得的系統流明數最佳化
- 控制演算法可平衡線路和負載上的切換及導通損失,以維持 最佳效率

説明

LinkSwitch-PL 系列實現了相當小且低成本的 Single-stage 功率因數修正定電流驅動器,適用於固態照明。針對 LED 電流的直接感測進行最佳化之後,LinkSwitch-PL 可在相當廣泛的輸入電壓範圍中運作,傳輸的輸出功率高達 16 W。LinkSwitch-PL 控制演算法以最少的外部元件提供不閃爍 TRIAC 調光功能。

每部裝置都將一個 725 V 額定功率的 MOSFET、新穎的不連續模式 可變頻率變數開啟時間控制器、頻率抖動、逐週期電流限制和磁滯回 復過温關機保護全部整合到單晶片 4 接腳 IC 中,可用於 SO-8C、eSOP-12 和 eDIP-12 封裝。

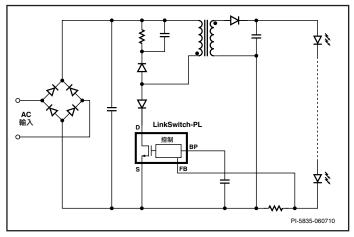


圖 1: 基礎應用電路圖。

輸出功率表

	85-265 VAC						
產品 ²	最小輸出功率	最大輸出功率1					
LNK454D	1.5 W	3 W					
LNK456D	3 W	6 W					
LNK457D/K/V	4 W	8 W					
LNK458K/V	6 W	11.5 W					
LNK460K/V	8 W	16 W					

表 1: 輸出功率表。

附註:

- 在散熱足夠的開放式架構設計中,環境温度為50°C條件下所測出的最大實際連續功率(如需更多資訊,請參閱「關鍵應用考量」)。
- 2. 封裝: D: SO-8C、G: eSOP-12、V: eDIP-12。

	輸出電流					
串聯式 LED 數目	350 mA	500 mA	700 mA	1000 mA		
1	LNK454	LNK454	LNK454	LNK456		
2	LNK454	LNK456	LNK456	LNK457		
3	LNK456	LNK456	LNK457	LNK458		
4	LNK456	LNK457	LNK458	LNK460		
5	LNK457	LNK458	LNK460			
6	LNK457	LNK458	LNK460			
7	LNK458	LNK460				
8	LNK458	LNK460				
9	LNK458	LNK460				
10	LNK460					
11	LNK460					
12	LNK460					

圖 2: 以輸出 LED 串聯長度和電流為基礎的裝置選擇。假設每一個 LED 典型壓降為 3.5 V

www.powerint.com 2010 年 11 月

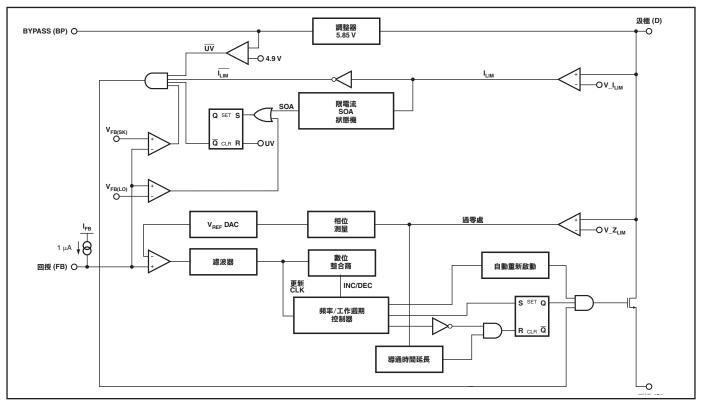


圖 2: 功能區塊圖。

接腳功能説明

汲極 (D) 接腳:

高電壓功率 MOSFET 的汲極連接。透過切換開關高電壓電流源從 此接腳提供內部啟動偏壓電流,也會使用此接腳執行汲極電流感 測和相關聯的控制器功能。

源極 (S) 接腳:

功率 MOSFET 的源極連接。BP 和回授接腳的接地參考。

BP 接腳:

內部產生 5.85 V 電源供應之外部旁路電容的連接點。

回授 (FB) 接腳:

LED 電流感測接腳。在正常運作期間,290 mV 臨界值會決定流過 負載感測電阻的電流平均值。

第二臨界值會對過量輸出電流漣波進行箝位。

第三高的臨界值用於提供輸出短路和過壓情況下的保護 (請參閱圖 5)。

功能説明

LinkSwitch-PL 將高壓功率 MOSFET 切換開關及電源供應器控制器結合在一部裝置中。IC 提供 Single Stage 功率因數修正以及LED 電流控制。LinkSwitch-PL 控制器由以下元件構成: 振盪器、回授 (感測和邏輯) 電路、5.85V 調整器、磁滯過温保護、頻率抖動、逐週期限電流、迴路補償電路、自動重新啟動、切換開啟期間延長、功率因數和定電流控制。

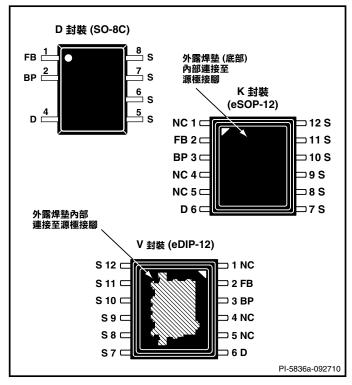


圖 3: 接腳配置 (俯視圖)。

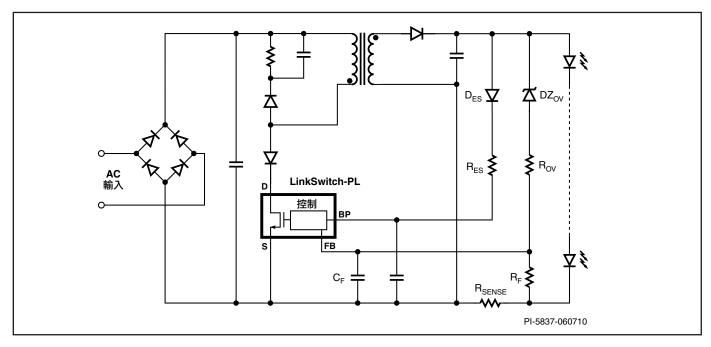


圖 4: 典型應用電路圖。

在 LED 電流直接感測的配置中,平均回授接腳電壓為 LED 電流的複本,由感測電阻 (如圖 4 的 R_{SENSE}) 進行分級。小型的低通濾波器 (如圖 4 的 R_F和 C_F) 可減低回授接腳中的高頻雜訊。圖 5 説明回授接腳電壓的工作區域。LinkSwitch-PL 會設定其工作點,使得回授接腳電壓在穩態操作狀態下的平均值為 290 mV。將此臨界值設得較低是為了將感應電阻消耗降到最低。只要每輸入一次 AC 半週期,就會更新內部 MOSFET 切換頻率與開啟時間,以調節輸出電流並維持高功率因數。

如果回授接腳峰值電壓超過 520 mV,則會觸發週期跳離模式,並 以逐週期基礎來箝位受整合式功率 MOSFET 處理的功率。在輸入 電壓半週期時,切換頻率可能會有所改變,以降低輸出 LED 的熱 應力。

回授接腳電壓超過 2 V 時,會觸發自動重新啟動保護功能。此功能可提供輸出電壓過壓保護 (透過 DZ_{ov} 和 R_{ov} ,如圖 4 ,此保護功能會觸發 IC 進入自動重新啟動模式。

TRIAC (透過相位控制) 調光

LinkSwitch-PL 整合多樣功能,可在使用透過相位控制的 TRIAC 調光器時,改善調光範圍並減少外部電路複雜度。輸出 LED 電流受回授接腳電壓控制,回授接腳電壓的變更與 TRIAC 調光器導通角成正比。導通角縮小時,回授接腳電壓便會下降,導致平均 LED電流減小。

回授接腳參考電壓調整會在 AC 線間電壓半週期持續時間的大約25% 處啟動。超出 (POS) 臨界值時,V_{FB} 和輸出 LED 電流會持續降低,直到達到第二個相位角臨界值為止。此時,由於 TRIAC 導通角很小,IC 會依恆定的頻率和工作週期運作在開迴路狀態 (POL階段),由於輸入電壓鋭減而導致整合式功率 MOSFET 消耗的功率很小,因此產生的光輸出極暗。

在調光控制 LED 電流漣波期間,520 mV 的箝位回授臨界值也會 以線性方式降低。

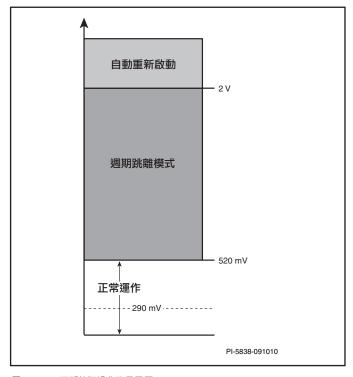


圖 5: 回授接腳操作臨界電壓。

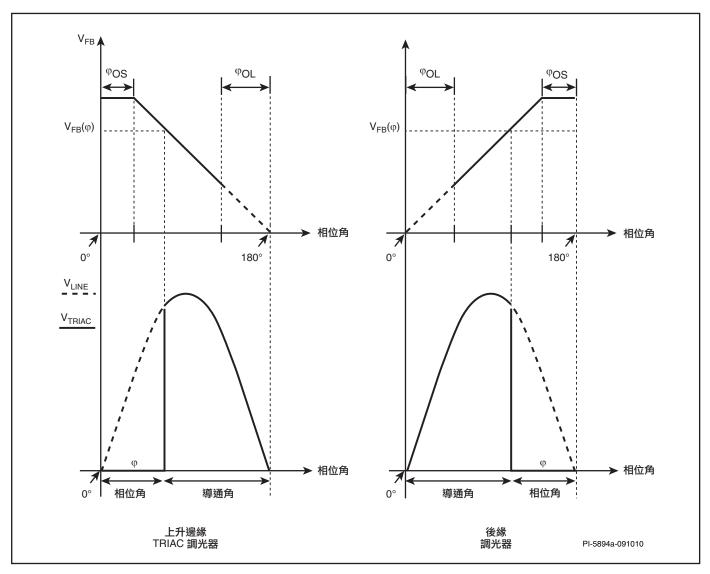


圖 6: 回授電壓與相位角調光特性。

IC 供應器與 BP 接腳

每當功率 MOSFET 關閉時,內部 5.85 V 調整器就會從汲極接腳電壓汲取電流,將連接至 BP 接腳的旁路電容充電至 5.85 V。BP接腳是內部供應電壓節點。當功率 MOSFET 開啟時,裝置會利用旁路電容內儲存的能量進行運作。由於內部電路的功耗極低,因此LinkSwitch-PL 可以依靠自 DRAIN 接腳汲取的電流持續運作。旁路電容值為 1 μF,對於高頻率去耦合和能量儲存而言已經足夠。調光應用可能需要更高的旁路電容值。

在相位角調光期間,如果導通角很小,則 AC 輸入電壓只在一小段時間內起作用。在這種情況下,IC 不應依賴整合的高壓電流源,而應使用外部偏壓電路從輸出 (圖 4 中的 Des 和 Res) 為 IC 供電。如果輸出電壓低於 7 V,則應使用外部偏壓電路。在變壓器上新增輔助繞組即可實行,變壓器之後會透過二極體 (超快) 和電容進行整流與濾波。應適當選取繞組電壓 (圈數),使工作輸出電流最低時仍支援最大 IC 功耗。

啟動、切換頻率與導通時間範圍

啟動時,控制器會使用初始的切換頻率 f_{MIN} 和最小導通時間 t_{ON(MIN)}。 對輸出電容的充電以及傳輸到輸出 LED 的能量,使功率 MOSFET 切換頻率逐步增大,在每個 AC 輸入電壓半週期,都會更新導通時間。

線間電壓、LED 上的壓降和轉換器效率決定了穩定狀態切換頻率 和導通時間。

在輕負載的情況下,裝置達到最低頻率 f_{MIN} 和最短導通時間 t_{ONMIN})時,控制器會跳離週期來調節裝置。在這種工作模式下,不會對輸入電流進行功率因數修正,不能保證平均輸出電流下降到正常範圍內。回授接腳週期跳離臨界值原本為正常調節等級的兩倍,而現在調降到只比這些狀況下限制輸出功率傳輸所需的等級高一點。在正常負載狀況下,設計得當的供應器不會在這種模式下運作。正確設計的電源供應器會在切換頻率範圍 [f_{MIN} ... f_{MAX}]內運作,連接至正常負載時,導通時間則下降為 t_{ONMINI} 和 t_{ONMINI} 之間。

過載保護

如果發生過載情況,系統會提高每個 AC 半週期的工作頻率和導通時間,直到達到最高頻率和最長導通時間為止。達到該狀態時,控制器將進入自動重新啟動保護模式,會禁止使用功率 MOSFET 的閘極大約 1.28 s (如果主電源線間電壓頻率為 50 Hz) 或 1.02 s (如果主電源線間電壓頻率為 60 Hz)。經過此自動重新啟動關閉時間之後,會重新啟用功率 MOSFET 並正常進行啟動,即使用 f_{MIN} 和 t_{ONMIN}, ,進而逐步增大,直到再次達到調節為止。如果發生持續過載的狀況,則自動重新啟動工作週期 DC_{AB} 大約為 33%。

如果 TRIAC 導通工作週期小於 60%,則相位調光期間會禁止使用 過載保護。

輸出過壓保護

如果供應器輸出為無負載狀況,則輸出過壓積納二極體 (圖 4 的 DZ_{ov}) 在達到其臨界值後將導通。回授接腳上將出現超過 $V_{FB(AR)}=2$ V 的電壓 V_{ov} IC 會進入自動重新啟動模式。

輸出短路

如果供應器的輸出(如 LED 負載)發生短路,則會有大量的能量傳輸至感測電阻,導致回授接腳產生高電壓。在此狀況下,如果回授接腳電壓超過 2 V,IC 會將此事件解讀為輸出短路,並會進入自動重新啟動模式。

安全工作區 (SOA) 保護

如果在上升邊緣遮蔽時間之後,功率 MOSFET 電流超出限電流, 導致功率 MOSFET 有 3 個連續週期過早終止,則會觸發 SOA 保 護模式,IC 會進入自動重新啟動模式。

磁滯回復過溫保護

過温保護電路會感測晶片的接面温度。過温保護臨界值設為 142 °C (磁滯温度通常為 75 °C)。如果晶片温度上升超過此臨界值 (142 °C),將停用功率 MOSFET,直到晶片温度下降達 75 °C 時才會重新啟用功率 MOSFET。

LinkSwitch-PL 應用範例

圖 7 顯示的電路可提供 15 V LED 串電壓、350 mA 的單一定電流輸出。您可以使用標準 AC 主電源 TRIAC 調光器,將輸出電流降低至 1% (3 mA),而不會有 LED 負載不穩定和閃爍的情形。本電路板與低成本前緣觸發及更精密的後緣調光器皆可相容。

本電路板已進行最佳化,能夠在全電壓 AC 輸入電壓範圍 (85 VAC 至 265 VAC, 47 Hz 至 63 Hz) 上操作,但是在 0 VAC 至 300 VAC 的輸入範圍中也不會有所損壞。這可以提升現場使用可靠性,也可以增加線間弛波與突波期間的使用壽命。LinkSwitch-PL 所採用的設計可以提供高功率因數 (於 115 VAC / 230 VAC 時大於 0.9) 以及低 THD (於 230 VAC 時小於 15%,於 115 VAC 時小於 10%),能夠遵守所有目前的國際要求,並讓單一設計能夠在全世界通用。

選擇電路板尺寸外型,以符合標準梨形 (A19) LED 替換燈泡的要求。輸出為非隔離類型,並且需要外殼的機械設計將供應器及 LED 負載與使用者隔離開來。

PI 零件選擇

選取比要求的尺寸大一號的裝置,以提高效率並減少裝置的温度 上升。這樣通常可以達到最高的效率。如果進一步增大裝置尺寸, 則由於較大的 MOSFET 會產生較大的切換損失,因此通常不會提 高效率,甚至會使效率降低。

AC 線間電壓 TRIAC 調光器介面電路

為了提供低成本的輸出調光功能,採用 TRIAC 的上升邊緣相位調 光器在設計時有許多取捨。

由於 LED 照明所消耗的功率比白熾照明相對的要小得多,因此燈泡所產生的電流會低於 TRIAC 調光器的吸持電流。這可能會導致不良狀況,例如調光範圍受限和/或閃爍。TRIAC 開啟時對輸入電容進行充電的浪湧電流會產生電流振盪。這同樣會引起不良狀況,因為振盪可能導致 TRIAC 電流降至零,並且在 AC 週期的剩餘時間內關閉、或是快速地開啟和關閉 TRIAC 電流。

為了解決這些問題,設計會加入三種電路塊、一個被動阻尼器、一個主動阻尼器以及一個洩放器。這些電路塊的缺點是會增加功率消耗,進而降低供應器的效率。在這個設計中,選取的值可以在高線間電壓中,利用單一調光器連接到單一燈泡的方式,允許不閃爍的操作。如果是使用多個燈泡並聯或是僅在低線間電壓 (100/115 VAC)的情況下進行不閃爍操作,那麼您可以將這些值最佳化,以減少功率消耗並提高效率。

由於這些電路塊僅為調光應用所需,所以使用非調光設計時,您可以使用跳線來取代, R7、R8 和 R20,以省去這些元件。

主動和被動阻尼器電路

電阻器 R20 會組成被動阻尼器,搭配主動阻尼器可限制 TRIAC 於每半個週期啟動一次時所產生的峰值浪湧電流。電阻器 R20 應採用防火類型,以在單點發生故障 (例如橋式整流器失敗) 時安全地斷電。

主動阻尼器電路會使用輸入整流器,每半個 AC 週期就連接串聯電阻 (R7 和 R8) 一次,然後透過並聯 SCR (Q3),於 AC 週期的剩餘時間內進行旁路。電阻器 R3、R4 和 C3 會在 Q3 開啟前決定延遲時間,然後 Q3 會讓阻尼電阻器 R7 和 R8 發生短路。

洩放器電路

電阻器 R10、R11 和 C6 會組成一個洩放器網路,確保初始的輸入電流夠高,能夠符合 TRIAC 吸持電流的要求,尤其是在使用小型導通角時更是如此。如果是非調光應用,則可以省去 R10、R11 和 C6。

輸入整流器和 EMI 濾波器

EMI 濾波功能是由 L1 以及 C4、L2 和 C5 所組成的 Pi (m) 濾波器 所提供。電阻 R2 和 R9 可以抑制濾波器階段的自我諧振,並減少 傳導性 EMI 頻中產生的峰值。如圖所示,本設計餘裕大於 20 dB,符合 EN55015 傳導性限制。

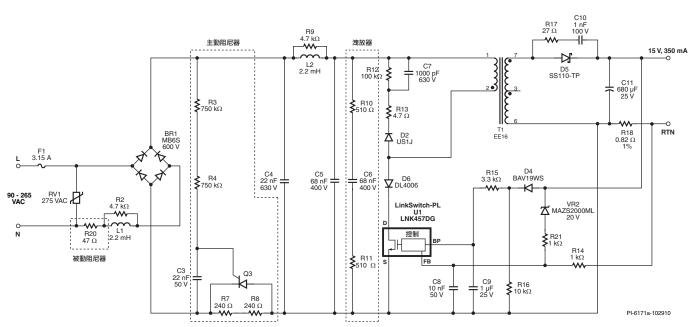


圖 7: 適用於 A19 白熾燈替換燈泡之 5 W、15 V LED 驅動器的電路圖。

輸入 AC 會由 BR1 進行整流,並由 C4 和 C5 進行濾波。選取有效輸入電容總和,也就是 C4 和 C5 的總和,以確保 LinkSwitch-PL 裝置可以偵測到正確的調光操作所需的正確 AC 輸入過零處。

主要元件

LNK457DG 裝置 (U1) 整合了電源切換裝置、振盪器、CC 控制引擎、啟動和保護的功能。整合式 725 V 電源 MOSFET 提供了更大的設計餘裕,即使是在高線間電壓應用中,也可以在線間突波事件期間提高穩健度。本裝置是透過去耦合電容 C9,從 BP 接腳開啟電源。啟動時,C9 會由 U1 透過 DRAIN 接腳,從內部電流源進行充電,然後在正常操作期間,透過 R15 和 D4 由輸出進行供電。如果是非調光式設計,則可以省去 D4 和 R15。

經過整流和濾波的輸入電壓會套用到 T1 一次側繞組的一端。變壓器的一次側繞組另外一端則會由 U1 中的整合式電源 MOSFET 驅動。漏電感峰值汲極電壓突波會受到含 D2、R13、R12 和 C7 的 RCD-R 箝位所限制。

二極體 D6 是用來保護 IC,使其不會在電源 MOSFET 關閉且輸入電壓低於輸出反射電壓 (V_{OP}) 時產生反向振盪 (汲極電壓低於源極電壓)。

輸出整流

變壓器的二次側會由 D5 (一種蕭特基屏障類型,能提供高效率) 進行整流,並由 C11 進行濾波。電阻器 R17 及 C10 會減弱高頻率振盪,並改善傳導性與輻射性 EMI。

輸出回授

CC 模式的設定點取決於 R18 中出現的壓降,然後會饋入 U1 的回授接腳。VR2 及 R21 會提供輸出過壓保護。

應用考量

輸入電容器選擇

若要在調光期間進行正確的作業,LinkSwitch-PL 裝置必須偵測線間電壓過零處。會透過汲極節點,在 DC 匯流排降至小於 19 V 時進行內部感測。對於 DC 匯流排必須在每半個週期達到此等級的要求,會限制輸入橋式整流器之 DC 側上的最大電容。一般來說,高功率因數所需的最大電容值也會導致開發期間都需符合 19 V的限制,而這必須在示波器中進行驗證。

如果電容需要縮減,而這導致了傳導性 EMI 增加,那麼可以在輸入整流器之前加入電容,讓整流器能夠有效地將傳導性 EMI 從匯流排電容中隔絕出來。

如果是用來與上升邊緣 TRIAC 調光器搭配運用的應用,則建議您使用薄膜電容,因為陶瓷電容通常會製造噪音。

輸出電容選擇

輸出電容對於輸出負載 (LED) 漣波電流有直接的影響。電容越大, 漣波電流就會越低。過大的電容可能會阻止輸出在自動重新啟動 的時間內達到穩壓,並且會導致啟動失敗或需要嘗試多次啟動 (暫 時性延誤)。太小的電容可能會導致回授接腳的電壓超過週期跳離 模式的臨界值、降低 PF 並造成調光時產生輸出閃爍。

因此,輸出電容值的選取應使輸出電流感測電阻 (圖 7 的 R18) 中出現漣波電壓,並且以 290 mVp-p 的目標值饋送至 100 mVp-p \leq $V_{\text{pg}} \leq 400$ mVp-p 範圍內的回授接腳。

輸出電容器的類型並不重要。非電解電容在使用壽命 (陶瓷及固態 電介質類型不含一段時間後就會蒸發的電解液)方面較吸引人,但 是電解類型能夠提供最好的效率與成本。如果選取了多層陶瓷,請 驗證電容與施加之電壓的產品規格型錄曲線,以及温度係數。典型 的電容值在不同温度之間可能會下降 50%,且/或接近於電壓額定 值。針對所有選取的電容類型,請驗證選取的電容是否額定為輸出 漣波電流。如果是電解類型,這就需要選取低 ESR 類型。建議在 温度 105 °C 或以上的環境中使用,以延長使用壽命。如果是典型 的設計,則會有輕微的輸出電容本身發熱的問題,因此使用壽命取 決於內部環境温度,並且基本上會依照阿瑞尼亞斯公式 (Arrhenius) 的模式,例如作業温度每降 10°C,使用壽命就會增加一倍。舉例 來說,在 105°C 環境中的額定使用壽命為 5,000 小時的電容選 擇,在 75°C 時就可以預期有 40,000 小時的使用壽命。電解電容 的使用壽命期限定義通常是 ESR 加倍時,電容就會減少 20%。對 -般使用者來說,這個部分對效能的影響並不大,還能夠擴展預期 使用壽命嫡合程度。

回授接腳訊號

在一般的非調光 (全功率) 操作期間, 回授接腳臨界值電壓 (在電流感測電阻中產生的電壓) 為 290 mV。為了要獲得最佳的輸出電流調節, 建議使用 100 mVp-p 至 400 mVp-p 之間的漣波電壓。您可以選取適當的輸出電容及電流感測電阻值,以達到這種電壓。如果漣波電壓的峰值超過 520 mV,裝置就會進入週期跳離模式, 降低PFC 效能 (降低 PF 並提高 THD)。

搭配上升邊緣 TRIAC 調光器

使用變壓器的考量

TRIAC 開啟時,因為磁通突然改變,所以變壓器會產生噪音。選取 具有較高機械諧振頻率的鐵芯,就可以減少這個問題的發生。應避 免使用窄長腳的鐵芯 (例如 EEL 類型)。RM 及其他陶芯種類也是 不錯的選擇,這些鐵芯種類在相同的磁通密度之下所產生的噪音 會比 EE 鐵芯少。減少鐵芯磁通密度 (BM) 也可以減少噪音的產 生。1500 高斯以下的值通常會消除任何噪音的產生,但是也會降 低所撰鐵芯尺寸的功率能力。

使用 TRIAC 調光器

為了提供低成本的輸出調光功能,採用 TRIAC 的上升邊緣相位調 光器在設計時有許多取捨。

如果是正確的操作,則白熾相位角度調光器一般會有指定的最低 負載,通常是 230 VAC 額定單位適用的~40 W。這是為了要確保 通過內部 TRIAC 的電流可以保持其指定的吸持電流臨界值以上。

由於 LED 照明所消耗的電力小得多,因此燈泡所汲取的輸入電流會低於調光器內的 TRIAC 吸持電流。驅動器的輸入電容會允許大型浪湧電流在 TRIAC 啟動時流動。接著,就會產生具有輸入階段的輸入電流振盪,以及可能會造成電流降低至 TRIAC 吸持電流以下的線路電感。這兩種機制都會導致不良狀況,例如調光範圍受限和/或閃爍。

為了克服這些問題,調光應用中整合了兩塊電路塊、阻尼器以及洩放器。這些電路的缺點是會增大功耗,進而降低電源供應器的效率。

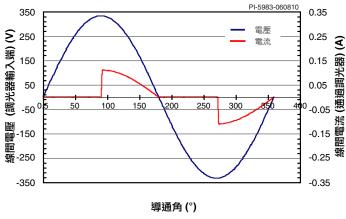


圖 8: 上升邊緣 TRIAC 調光器在 90° 導通角時理想的輸入電壓和電流波形。

圖 8 顯示上升邊緣 TRIAC 調光器輸入端的線間電壓和電流。在此範例中,TRIAC 導通角為 90 度。

圖 9 顯示所需的整流匯流排電壓和電流。

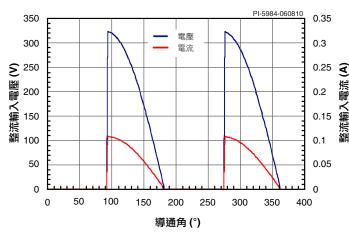


圖 9: 理想的 TRIAC 調光器輸出整流後產生的波形。

圖 10 顯示 TRIAC 過早關閉並重新啟動時,不需要的整流匯流排電壓和電流。在第一個半週期中,這是輸入電流振盪低於 TRIAC 吸持電流 (由初始浪湧電流引起) 所致。第二個半週期也顯示 TRIAC 關閉是電流低於朝向導通角一端的吸持電流所致。這種在交替半週期中的情況差異,經常視為兩個操作象限之間的 TRIAC 吸持電流差異所致。

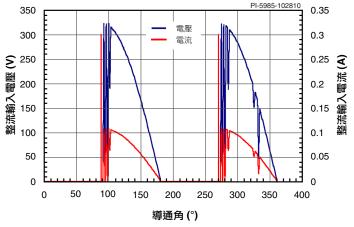


圖 10: 顯示異常啟動的相位角調光器範例。

如果 TRIAC 在半週期結束之前關閉,或快速開啟並關閉,則需要 洩放器和阻尼器電路。

一般來說,隨著洩放器和阻尼器電路中消耗的功率增加,調光相容性也會增加。

起初先將洩放器網路安裝在具有 0.1 μF 初始值、1 k Ω 總電阻及 2 W 功率額定值的整流電源匯流排中 (圖 7 中的 R10、R11 和 C6)。 降低電容值可尋找最小的可接受值。降低電容值會降低功率消耗, 並因此增加效率。

如果洩放器電流無法維持 TRIAC 導通,則請加入阻尼器。阻尼器的目的是要限制浪湧電流 (在輸入電容充電時) 以及發生在 TRIAC 開啟時的相關振盪。

起初先加入被動阻尼器,它是 AC 輸入的簡易電阻 (圖 7 中的 R20)。 在 10 Ω 至 100 Ω 範圍內之值的上限範圍常受限於允許消耗/温度在效率上的上升和降低。低於 10 Ω 的值也會使用,但效率較低,特別是在高 AC 線間輸入設計中。

如果被動阻尼器不足以防止不正確的 TRIAC 操作,則可再加入主動阻尼器。由於當 TRIAC 啟動時流動的浪湧電流相當大,這在高線間電壓應用中是很典型的。低成本的主動阻尼器電路由圖 7 中的 R3、R4、C3、Q3、R7 和 R8 構成。電阻器 R7 和 R8 會限制浪湧電流,並在僅一部分線間週期的電路中時可以有比被動情況下更大的值。在由 R3、R4 和 C3 定義的延遲之後,矽膠控制的整流器(SCR)Q3 會使 R7 和 R8 短路。該延遲經調整,才提供最短的時間來供給可接受之調光效能,以便將電阻器的消耗降至最低。SCR為低電流且低成本的裝置,可以透過相當低的閘極電流要求,提供於 TO-92 封裝中。所選取 SCR 的閘極驅動要求搭配最小指定線間電壓,可定義 R7 和 R8 的最大值。

調光器的運作方式經常會隨著製造商和功率額定值而有所不同。例如,相較於600 W 或1000 W 調光器,300 W 調光器需要的阻尼更低且要求洩放器的功率損失更低,這是因為使用通常具有較低吸持電流的較低額定電流TRIAC。線間阻抗的差異也會引起變異情況,所以為了維持一致性,建議在過程中使用AC電源,但仍應執行使用AC主電力來源的測試。

電子後緣調光器

圖 11 顯示使用電子後緣調光器時電源供應器輸入端的線間電壓和電流。在此範例中,調光器導通角為 90 度。這種類型的調光器通常使用功率 MOSFET 或 IGBT 來提供切換功能,因此沒有吸持電流的必要性。同時也因為導通會在過零處開始,因此不會有高電流突波和線間電壓振盪的問題。使用這些類型的調光器通常不需要阻尼和洩放器電路。

散熱考量

照明應用呈現了電源供應器設計人員獨特的熱能挑戰。在許多情形下,LED 負載和相關聯的散熱片會決定電源供應的環境温度。因此適度的散熱及確認所有裝置的操作温度是很重要的。對 LinkSwitch-PL裝置而言,源極接腳 (D 封裝) 或是外露焊墊 (K 或 V 封裝) 的温度建議為 <115°C,以在元件間差異留下餘裕。最糟糕的狀況通常是最大輸出功率、最大外部環境温度以及最大或最小輸入電壓。

佈局考量

一次側連接

BP 接腳電容應儘可能接近 BP 接腳,並儘可能接近源極接腳。源極接腳 Trace 不可與主功率 MOSFET 切換電流共用。連接至源極接腳的所有回授接腳元件都應與 BP 接腳電容遵循相同的準則。

主功率 MOSFET 切換電流應經由儘可能短的路徑返回大電容,這一點很重要。如果大電流路徑過長,會產生過多的傳導性與輻射性雜訊。

二次側連接

輸出整流器和輸出濾波電容應該儘可能接近。變壓器的輸出迴線接腳至輸出濾波電容迴線側的 Trace 應該很短。這些電流不應流經一次側源極接腳電流。應該使用短迴線來連接一次側源極接腳和二次側迴線。

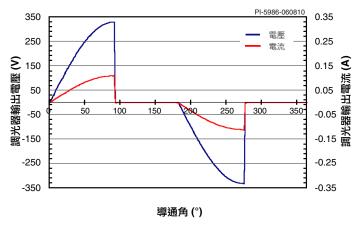


圖 11: 後緣調光器在 90° 導通角時理想的調光器輸出電壓和電流波形。

快速設計檢查清單

最大汲極電壓

確認在所有工作條件 (包括啟動和故障情況) 下,峰值 V_{DS} 不會超過 700 V°

最大汲極電流

測量所有工作條件 (包括啟動和故障狀況) 下的峰值汲極電流。查 看有無變壓器飽和的跡象 (通常發生於高環境温度時)。確認峰值 電流低於<絕對最大額定值>部分所載明的值。

散熱檢查

在最大輸出功率、最小和最大線間電壓及環境温度下,確認未超出 LinkSwitch-PL、變壓器、輸出二極體、輸出電容和汲極箝位電路元 件的温度規格。

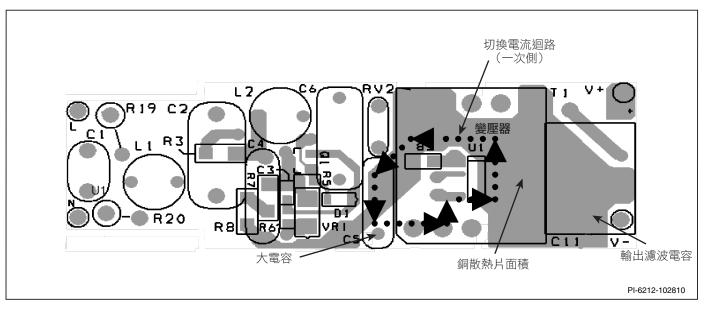


圖 12: RD-251 PCB 俯視圖。

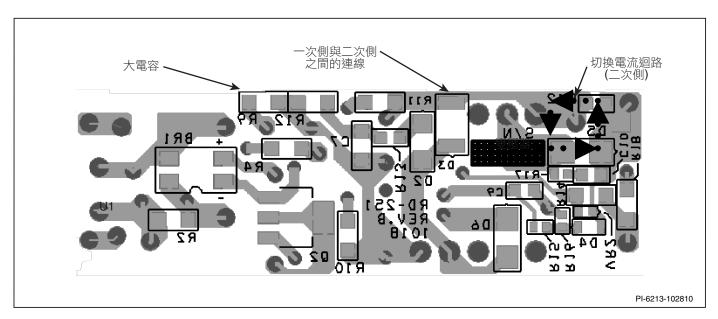


圖 13: RD-251 PCB 仰視圖。

絕對最大額定值(1,4)

DRAIN 接腳峰值電流(5): LNK454	4 400 mA (750 mA)
LNK456	6850 mA (1,450 mA)
LNK457	7 1,350 mA (2,000 mA)
LNK458	31750 mA (2650 mA)
LNK460	02700 mA (5100 mA)
DRAIN 接腳電壓	
回授接腳電壓	0.3 至 9 V
BP 接腳電壓	0.3 至 9 V
焊接温度 ⁽³⁾	260 °C
儲存温度	65 至 150°C
運作接面温度②	40 至 150 °C

附註:

- 1. 所有電壓均參考源極, $T_A = 25$ °C。
- 2. 通常由內部電路限制。
- 3. 1/16 英吋。焊接時間為 5 秒。
- 4. 在不導致產品永久損壞情況下,可以一次套用一個所指定的絕對 最大額定值。在絕對最大額定值情況下運行很長時間可能影響 產品可靠性。
- 5. 當汲極電壓同時低於 400 V 時,允許使用較高峰值汲極電流 (括號內)。

熱阻

熱阻: D (SO-8C) 封裝:

附註:

- 1. 焊接至 0.36 sq. in. (232 mm²)、2 oz. (610g/m²) 銅箔、無貼附外部散 勢片。
- 2. 焊接至 1 sq. in. (645 mm²)、2 oz. (610g/m²) 銅箔、無貼附外部散熱片。
- 3. 在接近塑膠介面的源極接腳上測量。
- 4. 於外露焊墊的表面測量。

		I					
參數	符號	條件 SOURCE = 0 V;T _J = -40 至 +125 °C (除非另有指定)		最小值	典型值	最大值	單位
控制功能							
最大輸出頻率	ı,	T 05 °C	平均值	110	122	134	kHz
	f _{MAX}	T _J = 25 °C	峰值間頻率抖動		6		%
国小松山城 龙			平均值	25.8	28.7	31.6	kHz
最小輸出頻率	f _{MIN}	T _J = 25 °C	峰值間頻率抖動		6		%
最大切換開啟時間	t _{ON(MAX)}	T _J = 25 °C			5.74		μs
最小切換開啟時間	t _{ON(MIN)}	T _J = 25 °C			1.2		μς
最大工作週期	DC _{MAX}				70		%
回授接腳電壓	V _{FB}	T _J = 25 °C 非調光 (全功率) 操作		280	290	300	mV
回授接腳電壓觸發週期 跳離模式	V _{FB(SK)}	非調光 (全功率) 操作			520		mV
自動重新啟動功能的 回授接腳電壓	V _{FB(AR)}				2		V
回授上拉電流	I _{FB}			-1.3	-1.0	-0.7	μΑ

	1	1					
參數	符號	條 SOURCE = 0 V; T (除非另	最小值	典型值	最大值	單位	
空制功能 (續)							
	I _{S1}	V _{FB} > (MOSFE	V _{frisk)} 「未切換)		450		μΑ
			LNK454		530		
及極供應電流		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LNK456		585		
	I _{S2}	$V_{FB} = 0 \text{ V}$ (MOSFET f_{MAX}	LNK457		650		μΑ
	02	切換)	LNK458		730		
			LNK460		1050		
			LNK454	-5.9	-4.2	-2.5	
	I _{CH1}	$V_{BP} = 0 V$	LNK456/457/458	-8.3	-5.9	-3.5	mA
	GITI	T _J = 25 °C	LNK460	-11.9	-8.5	-5.1	
BP 接腳充電電流			LNK454	-3.4	-2.4	-1.4	mA
	I _{CH2}	$V_{BP} = 4 \text{ V}$, $T_{J} = 25 \text{ °C}$	LNK456/457/458	-5.2	-3.7	-2.2	
			LNK460	-8.0	-5.7	-3.4	
BP 接腳電壓	V _{BP}			5.60	5.85	6.15	V
BP 接腳分流電壓	V _{SHUNT}	I _{BP} = 2 mA		5.9	6.2	6.6	V
露路保護							
TOPA PIVASE	I _{LIMIT}	di/dt = 160 mA/ μ s T _J = 25 °C	LNK454	255	290	325	
		di/dt = 325 mA/ μ s T _J = 25 °C	LNK456	510	580	650	
限電流		di/dt = 490 mA/ μ s T _J = 25 °C	LNK457	800	910	1020	mA
		di/dt = 650 mA/ μ s T _J = 25 °C	LNK458	1012	1150	1288	
		d	di/dt = 980 mA/ μ s T _J = 25 °C	LNK460	1637	1860	2083
上升邊緣遮蔽 ∟eading Edge Blanking) 詩間	t _{LEB}	T _J = 25 °C		160	200		ns
艮電流延遲時間	t _{ILD}	°C			150		ns
過熱關機温度	T _{SD}			135	142	150	°C
過熱關機磁滯温度	T _{SD(H)}				75		°C
BP 接腳開機重設臨界值 電壓	V _{BP(RESET)}				4.9		V

參數	符號	條件 SOURCE = 0 V ; T _J = -40 至 +125 °C (除非另有指定)		最小值	典型值	最大值	單位
輸出							
		LNK454	T _J = 25 °C		23.1	26.6	Ω
		$I_D = 26 \text{ mA}$	T _J = 100 °C		34.4	39.8	
		LNK456 I _D = 53 mA	T _J = 25 °C		11.7	13.5	
			T _J = 100 °C		17.5	20.2	
開啟狀態電阻		LNK457 I _D = 85 mA	T _J = 25 °C		6.9	7.9	
	R _{DS(ON)}		T _J = 100 °C		10.4	11.9	
		LNK458 I _D = 110 mA	T _J = 25 °C		4.4	5.1	
			T _J = 100 °C		6.7	7.6	
		LNK460 I _D = 170 mA	T _J = 25 °C		2.2	2.6	
			T _J = 100 °C		3.3	3.9	
關閉狀態漏電流	I _{DSS1}	$V_{BP} = 6.2 \text{ V}$, $V_{FB} > V_{FB(SK)}$, $V_{DS} = 580 \text{ V}$, $V_{JS} = 125 \text{ °C}$				50	μΑ
崩潰電壓	BV _{DSS}	$V_{BP} = 6.2 \text{ V}$, $V_{FB} > V_{FB(SK)}$, $T_{J} = 25 \text{ °C}$		725			V
汲極供應電 壓				50			V
自動重新啟動關閉時間	t _{AR(OFF)}	f _{MAIN} = 50 Hz			1.28		
		f _{MAIN} = 60 Hz			1.02		S
自動重新啟動工作週期	DC _{AR}				33		%

典型效能特性

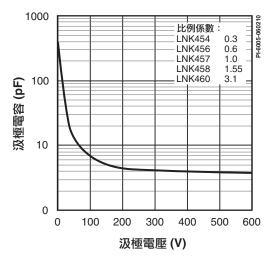


圖7: 汲極電容與汲極電壓關係圖。

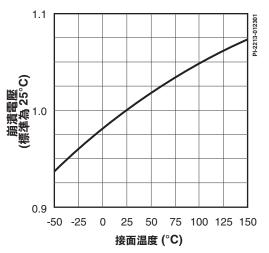


圖 9: 崩潰電壓與温度關係圖。

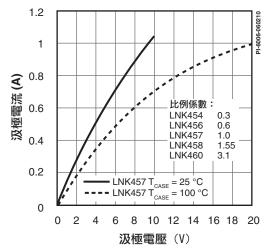
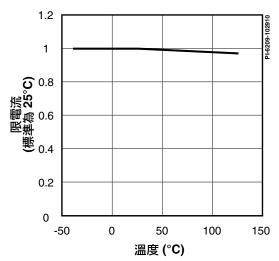
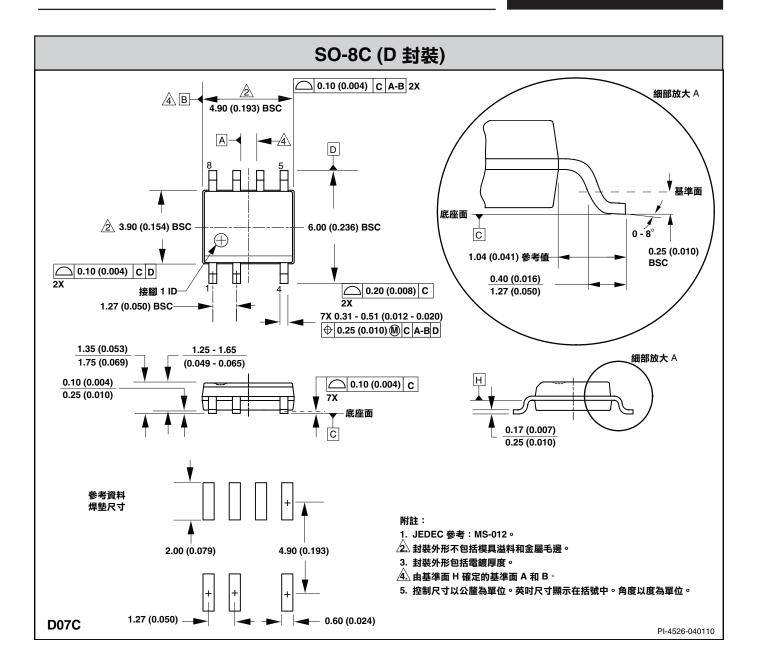
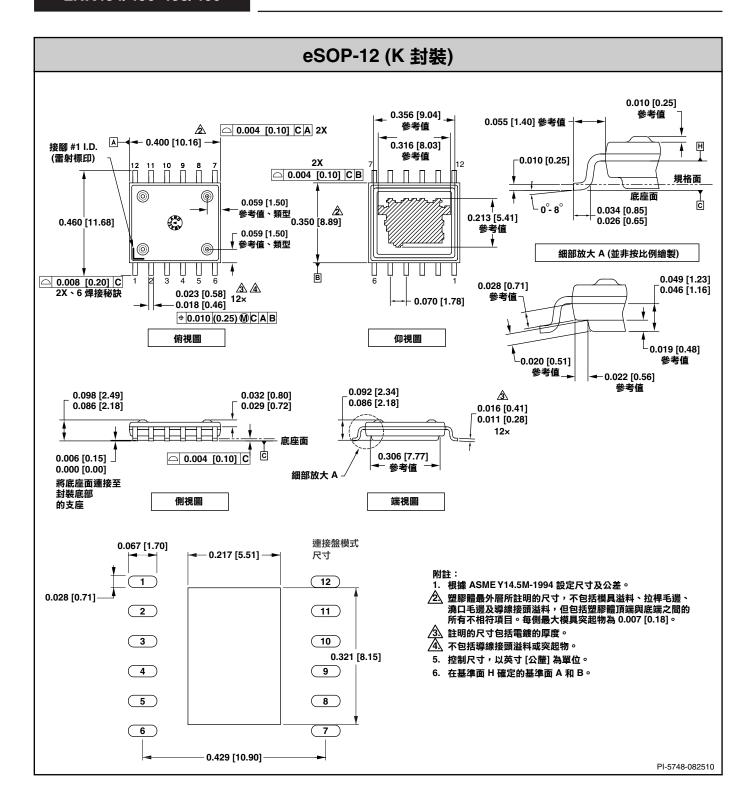
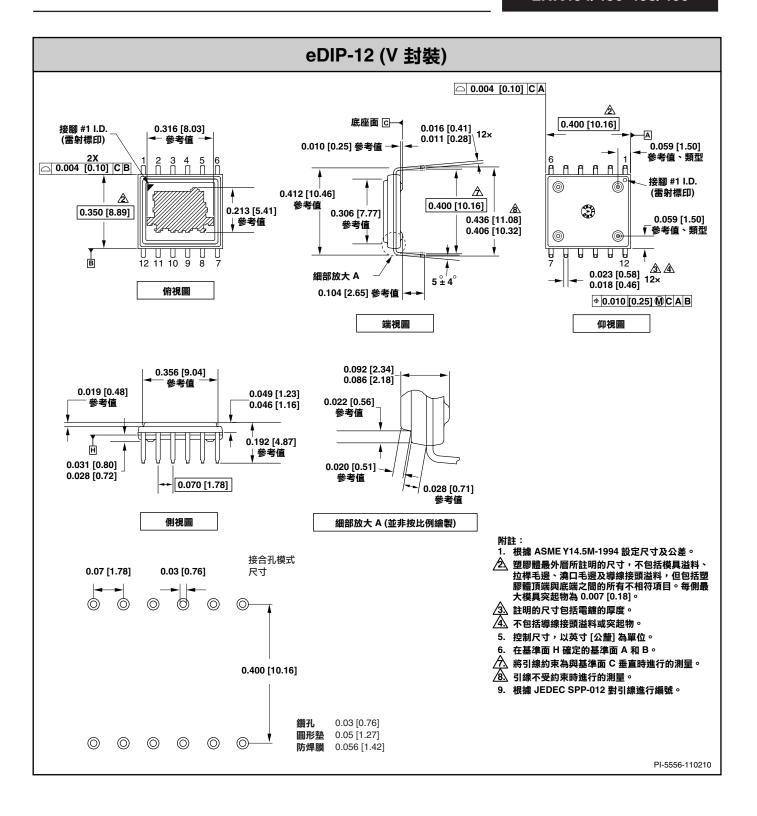
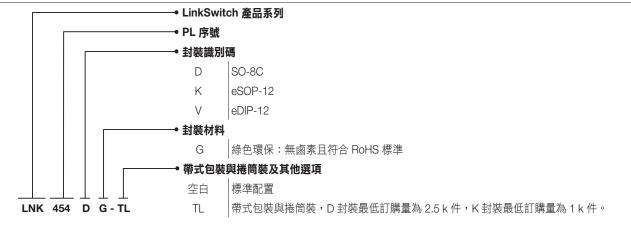


圖 8: 汲極電流與汲極電壓關係圖。


圖 10: 標準限電流與温度關係圖。

零件分類資訊

修訂	附註	日期
A	初始版本	11/01/10

如需最新更新,請造訪我們的網站: www.powerint.com

Power Integrations 保留隨時變更其產品以提高可靠性或可製造性的權利。Power Integrations 不承擔因使用此處所述的任何裝置或電路 而產生的任何責任。POWER INTEGRATIONS 在本文中不提供任何保證,並明確否認所有保證,包括但不限於對適售性、特定目的之適用性以及不侵犯第三方權利的默示保證。

專利資訊

Power Integrations 的一項或多項美國及國外專利 (或可能正在申請的美國及國外專利) 可能涵蓋本文件中所示的產品和應用 (包括產品外部的變壓器構造和電路)。www.powerint.com 上提供了 Power Integrations 專利的完整清單。Power Integrations 授予其客戶某些特定專利權的授權,詳情請參閱 http://www.powerint.com/ip.htm。

生命支援政策

未經 POWER INTEGRATIONS 總裁明確的書面許可,不可將 POWER INTEGRATIONS 產品用作生命支援裝置或系統的關鍵元件。具體説明如下:

- 1. 生命支援裝置或系統係指 (i) 透過外科手術植入人體的裝置,或 (ii) 支援或維持生命的裝置,以及 (iii) 根據合理推斷,遵循使用指示正確使用而無法正常執行功能時,會導致使用者重大傷害或死亡的裝置。
- 2. 關鍵元件係指生命支援裝置或系統中,根據合理推斷,無法正常執行功能時會導致生命支援裝置或系統出現故障,或是影響其安全 或有效性的任何元件。

PI 標章 TOPSwitch TinySwitch LinkSwitch PeakSwitch PeakSwitch CAPZero EcoSmart Clampless E-Shield Filterfuse StakFET PI Expert 和 PI FACTS 均為 Power Integrations, Inc. 的商標。其他商標為其個別公司之財產。
© 2010, Power Integrations, Inc.

Power Integrations 全球銷售支援地點

全球總部

5245 Hellyer Avenue San Jose, CA 95138, USA. 主要聯絡電話: +1-408-414-9200

客戶服務:

電話:+1-408-414-9665 傳真:+1-408-414-9765

電子郵件:

usasales@powerint.com

中國 (上海)

Room 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 電話:+86-21-6354-6323 傳真:+86-21-6354-6325

電子郵件:

chinasales@powerint.com

中國 (深圳)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Bldg., 2070 Shennan Zhong Rd, Shenzhen, Guangdong, China. 518031

電話: +86-755-8379-3243 傳真: +86-755-8379-5828

電子郵件:

chinasales@powerint.com

德國

Rüeckertstrasse 3 D-80336, Munich Germany

電話: +49-89-5527-3910 傳真: +49-89-5527-3920

電子郵件:

eurosales@powerint.com

印度

#1, 14th Main Road Vasanthanagar Bangalore-560052 India 電話: +91-80-4113-8020 傳真: +91-80-4113-8023

電子郵件:

indiasales@powerint.com

義大利

Via De Amicis 2 20091 Bresso MI

Italy

電話: +39-028-928-6000 傳真: +39-028-928-6009

電子郵件:

eurosales@powerint.com

日本

Kosei Dai-3 Bldg. 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi Kanagwan

222-0033 Japan

電話:+81-45-471-1021 傳真:+81-45-471-3717

電子郵件:

japansales@powerint.com

韓國

RM 602, 6FL

Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu,

Seoul, 135-728, Korea 電話: +82-2-2016-6610 傳真: +82-2-2016-6630

電子郵件:

koreasales@powerint.com

新加坡

51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 電話:+65-6358-2160 傳真:+65-6358-2015

電子郵件:

singaporesales@powerint.com

台灣

114 台灣台北市內湖區 內湖路一段 318 號 5 樓

電話: +886-2-2659-4570 傳真: +886-2-2659-4550

電子郵件:

taiwansales@powerint.com

歐洲總部

1st Floor, St. James's House East Street, Farnham Surrey GU9 7TJ

英國

電話: +44 (0) 1252-730-141 傳真: +44 (0) 1252-727-689

電子郵件:

eurosales@powerint.com

申請熱線

全球 +1-408-414-9660

申請傳真

全球 +1-408-414-9760