

| TitleReference Design Report for 2.4 W Charge<br>Using LNK603DG |                                     |  |  |  |
|-----------------------------------------------------------------|-------------------------------------|--|--|--|
| Specification                                                   | 85-265 VAC Input; 8 V, 0.3 A Output |  |  |  |
| Application                                                     | Low-cost Charger or Adapter         |  |  |  |
| Author                                                          | Applications Engineering Department |  |  |  |
| Document<br>Number                                              | RDR-159                             |  |  |  |
| Date                                                            | September 22, 2010                  |  |  |  |
| Revision                                                        | 1.2                                 |  |  |  |

### Summary and Features

- Revolutionary control concept provides very low cost, low part-count solution
  - Primary-side control eliminates secondary-side control and optocoupler
  - Provides ±5% constant voltage (CV) and ±10% constant current (CC) accuracy
  - Over-temperature protection tight tolerance (±5%) with hysteretic recovery for safe PCB temperatures under all conditions
  - Auto-restart output short circuit and open-loop protection
  - Extended pin creepage distance for reliable operation in humid environments
- EcoSmart<sup>®</sup> Easily meets all current international energy efficiency standards China (CECP) / CEC / ENERGY STAR 2 / EU CoC
  - No-load input energy consumption <30 mW at 230 VAC
  - Ultra-low leakage current: <5 µA at 265 VAC input (no Y capacitor required)
  - Design compliant with EN550022 and CISPR-22 Class B EMI specifications, with >10 dB margin
- 10 kV common mode surge immunity exceeds IEC 61000-4-5 Class 3 AC line surge requirements.
- Meets 15 kV ESD immunity (contact and air discharge)

#### PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <a href="http://www.powerint.com/ip.htm">http://www.powerint.com/ip.htm</a>.

> Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

# Table of Contents

| 1  | Intro | duction                                                                | 4    |
|----|-------|------------------------------------------------------------------------|------|
| 2  | Pow   | er Supply Specification                                                | 6    |
| 3  | Sch   | ematic                                                                 | 7    |
| 4  | Circ  | uit Description                                                        | 8    |
|    | 4.1   | Input Filter                                                           | 8    |
|    | 4.2   | LNK603DG Primary                                                       | 8    |
|    | 4.3   | Output Rectification and Filtering                                     |      |
|    | 4.4   | Output Regulation                                                      |      |
| 5  | PCE   | 3 Layout                                                               | .10  |
| 6  | Bill  | of Materials                                                           | .11  |
| 7  | Trar  | nsformer Specification                                                 | .12  |
|    | 7.1   | Electrical Diagram                                                     | .12  |
|    | 7.2   | Electrical Specifications                                              | .12  |
|    | 7.3   | Materials                                                              | .12  |
|    | 7.4   | Transformer Build Diagram                                              | .13  |
|    | 7.5   | Transformer Construction                                               | . 14 |
|    | 7.6   | Efficiency                                                             | .19  |
|    | 7.7   | Active Mode Measurement Data                                           | .20  |
|    | 7.7.  | 1 Energy Star v1.1 / CEC (2008)                                        | .20  |
|    | 7.7.2 | 2 Energy Star v2 (April 2008)                                          | .22  |
|    | 7.8   | No-Load Input Power                                                    | .23  |
|    | 7.9   | Regulation                                                             | .24  |
|    | 7.9.  | 1 Load                                                                 | .24  |
| 8  | The   | rmal Performance                                                       | .27  |
|    | 8.1   | Operating Temperature Survey                                           | .27  |
| 9  | Wa    | veforms                                                                | .28  |
|    | 9.1   | Drain Voltage and Current, Normal Operation                            | .28  |
|    | 9.2   | Output Voltage Start-up Profile                                        | .28  |
|    | 9.2.  | 1 No-Load output voltage start-up characteristic                       | .28  |
|    | 9.2.2 | 2 Output Voltage Start-up Characteristic with a Resistive Load (27 Ω)  | .29  |
|    | 9.2.3 | 3 Output Voltage Start-up Characteristic with a Battery-simulator Load | . 30 |
|    | 9.3   | Drain Voltage and Current Start-up Profile                             | .31  |
|    | 9.4   | Load Transient Response (50% to 100% Load Step)                        | . 32 |
|    | 9.5   | Output Ripple Measurements                                             |      |
|    | 9.5.  | 1 Ripple Measurement Technique                                         | .33  |
|    | 9.5.2 |                                                                        |      |
| 1( | ) Li  | ne Surge                                                               | .36  |
| 1  | 1 E   | SD                                                                     | .36  |
| 12 | 2 C   | onducted EMI                                                           | .37  |
| 1: | 3 R   | evision History                                                        | .39  |



### **Important Note:**

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.



# **1** Introduction

This engineering report describes a 2.4 W constant voltage/constant current (CV/CC) universal input power supply for cell phone or similar charger applications. This design was based on the LinkSwitch-II family product LNK603DG.



Figure 1 – RD159 Board Photograph (top and bottom views).

The LNK603DG was developed to cost effectively replace all existing solutions in lowpower charger and adapter applications. Its core controller is optimized for CV/CC charging applications with minimal external parts count and very tight control of both the output voltage and current, without the use of an optocoupler. The integrated 700 V switching MOSFET and ON/OFF control function of this IC achieve both high efficiency under all load conditions, and low no-load energy consumption. No-load performance and operating efficiency both exceed all current international energy efficiency standards.



The LNK603DG monolithically integrates a 700 V power MOSFET switch and controller. CV regulation is achieved using a unique ON/OFF control scheme, cable voltage-drop compensation, and tight regulation over a wide temperature range. The switching frequency is modulated to regulate the output current to provide a linear CC characteristic.

The LNK603DG controller consists of an oscillator, feedback (sense and logic) circuitry, a 5.8 V regulator, BYPASS pin programming functions, over-temperature protection, frequency jittering, current-limit circuitry, leading-edge blanking, a frequency controller for CC regulation, and an ON/OFF state machine for CV control all on one IC.

The LNK603DG also provides a sophisticated range of protection features, including auto-restart for control-loop component open circuit or short-circuit faults and output short-circuit conditions. Accurate hysteretic thermal shutdown ensures safe average PCB temperatures under all conditions.

The IC package provides extended creepage distance between high and low voltage pins (both at the package and the PCB), which is required in very humid conditions to prevent arcing and to further improve reliability.

The LNK603DG can be configured as either self-biased from the high-voltage drain pin or supplied via an optional bias supply. When configured as self-biased, the very low IC current consumption provides a worst-case no-load power consumption of less than 50 mW at 265 VAC, well within the 300 mW European Union CoC limit.

The EE16 transformer bobbin provides extended creepage to meet safety spacing requirements. To meet the 10 kV common-mode surge requirements, the transformer's secondary leads are terminated directly to the PCB (flying leads).

This document contains the power supply specifications, schematic, bill of materials, transformer specifications, and typical performance characteristics for this reference design.



# 2 Power Supply Specification

| Description                                                           | Symbol               | Min                      | Тур                                             | Max                                                 | Units                     | Comment                                                                                            |
|-----------------------------------------------------------------------|----------------------|--------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|
| Input                                                                 |                      |                          |                                                 |                                                     |                           |                                                                                                    |
| Voltage                                                               | V <sub>IN</sub>      | 85                       |                                                 | 265                                                 | VAC                       | 2 Wire – no P.E.                                                                                   |
| Frequency                                                             | f <sub>LINE</sub>    | 47                       | 50/60                                           | 64                                                  | Hz                        |                                                                                                    |
| No-load Input Power                                                   | P <sub>NL</sub>      |                          |                                                 | 30                                                  | mW                        | Measured at $V_{IN}$ = 230 VAC                                                                     |
| Output                                                                |                      |                          |                                                 |                                                     |                           | All measured at end of cable                                                                       |
| Output Voltage                                                        | V <sub>OUT</sub>     | 7.2                      | 8                                               | 8.8                                                 | V                         | $\pm$ 10%, 11.5 V at no-load                                                                       |
| Output Ripple Voltage                                                 | VRIPPLE              |                          | 400                                             |                                                     | mV                        | 20 MHz bandwidth                                                                                   |
| Output Current                                                        | Ι <sub>ουτ</sub>     | 270                      | 300                                             | 330                                                 | mA                        | ±10%                                                                                               |
| Output Cable Resistance                                               | R <sub>CBL</sub>     |                          | 0.6                                             |                                                     | Ω                         | 6 ft, 26 AWG                                                                                       |
| Output Power                                                          | Pout                 |                          | 2.4                                             |                                                     | W                         |                                                                                                    |
| Name plate output rating                                              |                      |                          |                                                 |                                                     |                           |                                                                                                    |
| Nameplate Voltage                                                     | V <sub>NP</sub>      |                          | 8                                               |                                                     | V                         |                                                                                                    |
| Nameplate Current                                                     | I <sub>NP</sub>      |                          | 270                                             |                                                     | mA                        |                                                                                                    |
| Nameplate Power                                                       | P <sub>NP</sub>      |                          | 2.16                                            |                                                     | W                         |                                                                                                    |
| Efficiency                                                            |                      |                          |                                                 |                                                     |                           |                                                                                                    |
| Full Load                                                             | η                    |                          | 75                                              |                                                     | %                         | P <sub>OUT</sub> , 25 °C                                                                           |
| Required average efficiency per<br>Energy Star EPS v1.1 / CEC<br>2008 | η <sub>ESV1.1</sub>  | 57                       | Energy Ef<br>Power Su                           | fficiency of<br>pplies (Au                          | Single-Vol<br>gust 11, 20 | st Method for Calculating the<br>tage External AC-DC and AC-AC<br>04)".                            |
| Required average efficiency per<br>Energy Star EPS v2 April, 2008     | $\eta_{\text{ESV2}}$ | 67                       | η <sub>ESV1</sub> (0.<br>η <sub>ESV2</sub> :(0. | .09 ln(P <sub>NP</sub> )<br>.0626 ln(P <sub>I</sub> |                           |                                                                                                    |
| Environmental                                                         |                      |                          |                                                 |                                                     |                           |                                                                                                    |
| Conducted EMI                                                         | N                    | leets CISF               | PR22B / EI                                      | N55022B                                             |                           | >6 dB Margin                                                                                       |
| Safety                                                                | Designe              | ed to meet               | IEC950, U                                       | JL1950 CI                                           | ass II                    |                                                                                                    |
| Line Surge<br>Differential<br>Common Mode                             |                      | 1 (2 <sup>*</sup> )<br>6 |                                                 |                                                     | kV<br>kV                  | 1.2/50 μs surge, IEC 1000-4-5,<br>Series Impedance:<br>Differential Mode: 2 Ω<br>Common Mode: 12 Ω |
| ESD                                                                   |                      | -15                      |                                                 | 15                                                  | kV                        | Contact and air discharge to<br>IEC 61000-4-2                                                      |
| Ambient Temperature                                                   | Т <sub>АМВ</sub>     | 0                        |                                                 | 40                                                  | °C                        | Case external, free convection, sea level                                                          |

\* With optional MOV (RV1) fitted



# 3 Schematic

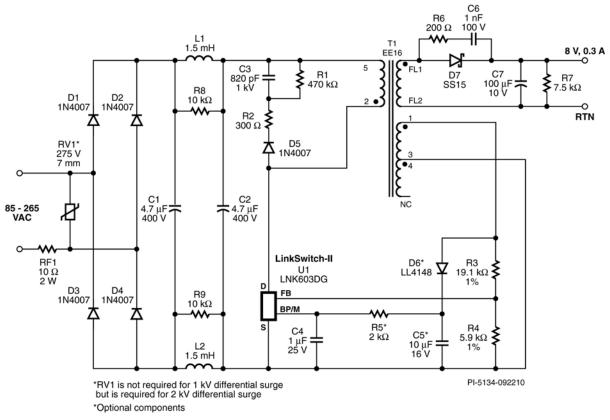



Figure 2 – RD159 Circuit Schematic.



# 4 **Circuit Description**

This circuit uses the LNK603DG in a primary-side regulated flyback power supply configuration.

### 4.1 Input Filter

The AC input power is rectified by diodes D1 through D4. The rectified AC is filtered by bulk storage capacitors C1 and C2. Inductors L1 and L2, with capacitors C1 and C2, form pi ( $\pi$ ) filters to attenuate conducted differential-mode EMI noise. This configuration, along with Power Integrations' transformer E-shield<sup>™</sup> technology, allows this design to meet EMI standard EN55022 class B with good margin and without a Y capacitor. In addition, the transformer's construction gives very good EMI repeatability.

Fusible resistor RF1 provides protection against catastrophic failure. It must be rated to withstand the instantaneous dissipation when the supply is first connected to the AC input (while the input capacitors charge) at VAC<sub>MAX</sub>. This means choosing either an over-sized metal-film or a wire-wound resistor for RF1. Because of the dissipation levels, this design uses a wire-wound resistor (rather than a metal-film type). Note that RV1 is shown in the schematic, but it is not loaded on the PCB in this design since it is not necessary for withstanding a 1 kV differential surge. However, if your product is tested against, or expected to withstand, a 2 kV differential surge, load RV1 on the PCB.

## 4.2 LNK603DG Primary

The LNK603DG (U1) incorporates a power switching MOSFET, an oscillator, a CV/CC control engine, and startup and protection functions on one IC. IC U1's integrated 700 V MOSFET enables it to provide sufficient voltage margins for universal AC input applications, even in the event of extended line surges or swells. This is ideal in situations where AC voltage variations go beyond the standard universal AC input voltage range. To further simplify the power supply's design, power U1 solely from the BYPASS pin via the decoupling capacitor C4. The optional bias supply (consisting of D6, C5, and R5) used in this design further reduces no-load input power, and increases efficiency with light loads.

The rectified and filtered input voltage is applied to one side of transformer T1's primary winding. The MOSFET drives the other side of the primary winding. The leakage inductance drain voltage spike is limited by an RCD-R clamp consisting of D5, R1, R2, and C3. Resistor R2 has a relatively large value to prevent any excessive ringing on the drain voltage waveform caused by the leakage inductance. Excessive ringing can increase output ripple by introducing an error in the sampled output voltage. IC U1 samples the feedback winding each cycle, 2.5 µs after turn-off of its internal MOSFET.



### 4.3 Output Rectification and Filtering

The transformer's secondary is rectified by D7, a Schottky-barrier diode, and filtered by C7. In this application, C7, having a low ESR value, meets the output voltage ripple requirement without an LC post filter. If it provides lower cost overall, select a smaller value for C7, and follow it with a ferrite bead and another capacitor (100  $\mu$ F) to filter switching noise.

In designs where lower (by 2% to 3%) average efficiency is acceptable, replace D7 with a PN-junction diode (such as an ES1A or UF4001) to lower cost. Adjust R3 and R4 accordingly, to keep the output voltage properly centered.

Resistor R6 and capacitor C6 together dampen high-frequency ringing (therefore reducing radiated EMI) and reduce voltage spikes that may appear across D7.

### 4.4 Output Regulation

The *LNK603DG* regulates the output using ON/OFF control for constant voltage (CV) regulation and frequency control for constant current (CC) regulation. The output voltage is sensed by the bias winding on T1. Feedback resistors R3 and R4 were selected using standard 1% resistor values to center both the nominal output voltage and the constant current regulation thresholds. Resistor R7 provides a minimum load to maintain output regulation when the output is unloaded.



# 5 PCB Layout

Notable layout design points are

- 1 A spark gap and associated slot in the PCB between the primary and secondary allows successful ESD testing up to  $\pm 15$  kV.
  - The preferential arcing point routes the energy from ESD discharges back to the AC input, away from the transformer and primary circuitry.
  - The trace connected to the AC input side of the spark gap is spaced away from the rest of the board and its components to prevent arc discharges to other sections of the circuit.
- 2 The drain trace length has been minimized to reduce EMI.
- 3 Clamp and output diode loop areas are minimized to reduce EMI.
- 4 The AC input is located away from switching nodes to minimize noise coupling that may bypass input filtering.
- 5 C4 (the bypass capacitor) has been placed as close as possible to the BYPASS pin on U1.

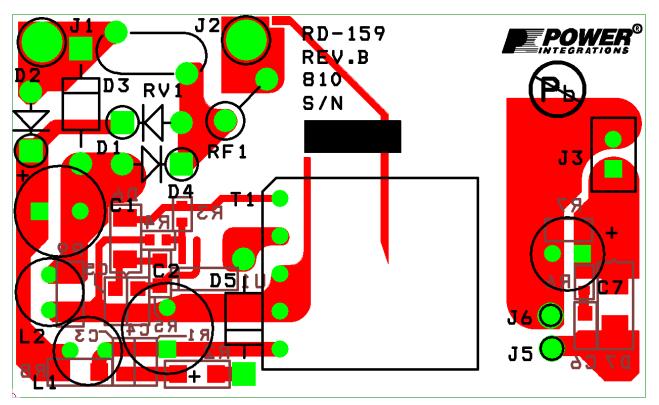



Figure 3 – Printed Circuit Layout.



# 6 Bill of Materials

| Item | Qty | Ref Des           | Description                                                                                    | Mfg                                             | Mfg Part Number                     |
|------|-----|-------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|
| 1    | 2   | C1 C2             | 4.7 μF, 400 V, Electrolytic, (8 x 11.5)                                                        | Taicon Corp                                     | TAQ2G4R7MK0811MLL3                  |
| 2    | 1   | C3                | 820 pF, 1000 V, Ceramic, X7R, 0805                                                             | Kemet                                           | C0805C821MDRACTU                    |
| 3    | 1   | C4                | 1 μF, 25 V, Ceramic, X7R, 0805                                                                 | Panasonic                                       | ECJ-2FB1E105K                       |
| 4    | 1   | C5                | 10 μF, 16 V, Ceramic, X5R, 0805                                                                | Murata                                          | GRM21BR61C106KE15L                  |
| 5    | 1   | C6                | 1 nF, 100 V, Ceramic, X7R, 0805                                                                | Panasonic                                       | ECJ-2VB2A102K                       |
| 6    | 1   | C7                | 100 $\mu F,$ 10 V, Electrolytic, Very Low ESR, 300 m\Omega, (5 x 11)                           | Nippon Chemi-Con                                | EKZE100ELL101ME11D                  |
| 7    | 5   | D1 D2 D3<br>D4 D5 | 1000 V, 1 A, Rectifier, DO-41                                                                  | Vishay                                          | 1N4007-E3/54                        |
| 8    | 1   | D6                | 75 V, 0.15 A, Fast Switching, 4 ns, MELF                                                       | Diode Inc.                                      | LL4148-13                           |
| 9    | 1   | D7                | 50 V, 1 A, Schottky, DO-214AC                                                                  | Micro commercial Co.                            | SS15-TP                             |
| 10   | 2   | J1 J2             | Test Point, WHT, THRU-HOLE MOUNT                                                               | Keystone                                        | 5012                                |
| 11   | 1   | J3                | 6 ft, 26 AWG, 2.1 mm connector (custom)                                                        | Anam Instruments                                | 3PH323A0                            |
| 12   | 2   | L1 L2             | 1.5 mH, 0.18 A, 5.5 x 10.5 mm                                                                  | Tokin                                           | SBC1-152-181                        |
| 12   | 1   | R1                | 470 kΩ, 5%, 1/8 W, Metal Film, 0805                                                            | Panasonic                                       | ERJ-6GEYJ474V                       |
| 14   | 1   | R2                | 300 Ω, 5%, 1/4 W, Metal Film, 1206                                                             | Panasonic                                       | ERJ-8GEYJ301V                       |
| 15   | 1   | R3                | 19.1 kΩ, 1%, 1/16 W, Metal Film, 0603                                                          | Panasonic                                       | ERJ-3EKF1912V                       |
| 16   | 1   | R4                | 5.9 kΩ, 1%, 1/16 W, Metal Film, 0603                                                           | Panasonic                                       | ERJ-3EKF5901V                       |
| 17   | 1   | R5                | 2 kΩ, 5%, 1/8 W, Metal Film, 0805                                                              | Panasonic                                       | ERJ-6GEYJ202V                       |
| 18   | 1   | R6                | 200 Ω, 5%, 1/10 W, Metal Film, 0603                                                            | Panasonic                                       | ERJ-3GEYJ201V                       |
| 19   | 1   | R7                | 7.5 kΩ, 5%, 1/8 W, Metal Film, 0805                                                            | Panasonic                                       | ERJ-6GEYJ752V                       |
| 20   | 2   | R8 R9             | 10 kΩ, 5%, 1/4 W, Metal Film, 1206                                                             | Panasonic                                       | ERJ-8GEYJ103V                       |
| 21   | 1   | RF1               | 10 $\Omega$ , 2 W, Fusible/Flame Proof Wire Wound                                              | Vitrohm                                         | CRF253-4 10R                        |
| 22   | 0   | RV1               | 275 V, 23 J, 7 mm, RADIAL                                                                      | Littlefuse                                      | V275LA4P                            |
| 23   | 1   | T1                | Custom Transformer, EE16, 10 pins; per Power<br>Integrations' RD-159 Transformer Specification | Santronics<br>Ice Components<br>Precision, Inc. | SNXR1486<br>TP08027<br>019-6118-00R |
| 24   | 1   | U1                | LinkSwitch-II, LNK603DG, CV/CC, SO-8-DN                                                        | Power Integrations                              | LNK603DG                            |



# 7 Transformer Specification

## 7.1 Electrical Diagram

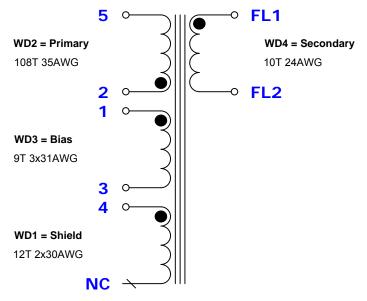
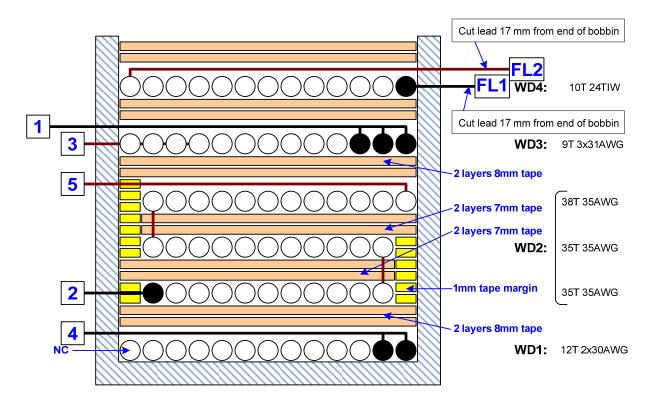



Figure 4 – Transformer Electrical Diagram.


### 7.2 Electrical Specifications

| Electrical Strength           | 60 second, 60 Hz, from pins 1-5 to pins 6-10                                           | 3000 VAC         |
|-------------------------------|----------------------------------------------------------------------------------------|------------------|
| Primary Inductance            | Pins 2-5, all other windings open, measured at 100 KHz, $0.4V_{\text{RMS}}$            | 2.28 mH,<br>±10% |
| Resonant Frequency            | Pins 2-5, all other windings open                                                      | 800 kHz (min)    |
| Primary Leakage<br>Inductance | Pins 3-5, with flying leads 1 and 2 shorted, measured at 100 kHz, 0.4 $V_{\text{RMS}}$ | 65 μH (max)      |

### 7.3 Materials

| Item | Description                                                              |
|------|--------------------------------------------------------------------------|
| [1]  | Core: EE16, NC-2H or equivalent, gapped for ALG of 143 nH/T <sup>2</sup> |
| [2]  | Bobbin: EE16, Horizontal, 10 pins, (5/5)                                 |
| [3]  | Magnet Wire: #30 AWG                                                     |
| [4]  | Magnet Wire: #31 AWG                                                     |
| [5]  | Magnet Wire: #35 AWG                                                     |
| [6]  | Triple Insulated Wire: #24 AWG                                           |
| [7]  | Margin tape: 1.0 mm wide                                                 |
| [8]  | Tape: 3M 1298 Polyester film, 2.0 mils thick, 8.0 mm wide                |
| [9]  | Tape: 3M Polyester film, 2.0 mils thick, 7.0 mm wide                     |
| [10] | Varnish                                                                  |





## 7.4 Transformer Build Diagram

**Figure 5** – Transformer Build Diagram.

The highlighted 1 mm tape margin (in yellow above) was added to improve consistency in EMI performance in production. The spacing of the primary winding away from the edge of the bobbin walls improves the effect of the subsequent shield windings and makes the transformer design less sensitive to winding variations. However, if the transformer can be manufactured consistently to comply with EMI performance specifications without the extra margin tape, omit the margin tape to reduce transformer cost.

Observe these key factors when winding without the tape margins

- Ensure there are no gaps in the windings the windings should fill the bobbin width in the specified number of turns. Due to mechanical variations in bobbin and wire diameters adjust the wire gauge, if necessary, to meet this requirement.
- Ensure windings stay within their layers. (Turns from other windings must never drop down into previous layers at the edge of the bobbin.)

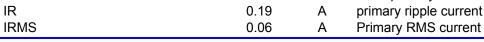
To evaluate the transformer without the 1 mm tape margins, increase the wire gauge of the primary winding so that each layer fills the bobbin window width in 35, 35, and 38 turns (layers 1, 2, and 3 of the winding, respectively).



## 7.5 Transformer Construction

| Bobbin<br>Preparation | Primary side of the bobbin is placed on the left-hand side, and secondary side of the bobbin is placed on the right-hand side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WD1<br>Shield         | Temporarily hanging the start end of the wires of item [3] on pin 6, evenly wind 12 bi-<br>filar turns from right to left with tight tension. The maximum allowed gap between the<br>winding and the left and right lateral walls of the bobbin must be less than 0.5 mm (20<br>mils). Cut the end of the wire to leave it NC (no connection), and bring the start end of<br>the wire across the bobbin to the left to terminate at pin 4.                                                                                                                                                                                                           |
| Insulation            | 2 layers of tape item [8].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WD2<br>Primary        | Apply 1 mm margin tape item [7] on both sides of bobbin to match the height of first layer of primary winding (approximately 2 turns) on the left side, and first two layers on the right side (approximately 4 turns). Start at pin 2, wind 35 turns of item [5] from left to right with tight tension and apply 2 layers tape item [9]. On the left side, apply 1mm margin tape [7] to match another two layers. Continue winding 35 turns of item [5] from left to right to left. Apply 2 layer tape item [9], continue wind 38 turns of item [5] from left to right, and at the last turn bring the wire back to the left to terminate at pin 5. |
| Insulation            | 2 layers of tape item [8].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WD3<br>Bias           | Temporarily hang the start end of the wires of item [4] on pin 8, wind 9 tri-filar turns from right to left uniformly, terminate the end of the wires at pin 3, bring the start end of the wires across the bobbin to the left side to terminate at pin 1.                                                                                                                                                                                                                                                                                                                                                                                           |
| Insulation            | 2 layers of tape item [8].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WD4<br>Secondary      | Temporarily hang the start end of the wire of item [6] on pin 6 and leave it about 17 mm long, wind 10 turns of item [6] from right to left uniformly. At the last turn bring the wire across the bobbin to the right side. Leave this end floating, about 17 mm long.                                                                                                                                                                                                                                                                                                                                                                               |
| Insulation            | 2 layers of tape item [8].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Finish                | Remove all pins on the secondary side. Gap the core to meet required primary inductance value. Secure the core with tape. Dip vanish [10].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

**Note**: Tape between adjacent primary winding layers reduces primary capacitance and losses, improving no-load input power and light-load efficiency.




**Design Spreadsheet** 

| RD-159 Power<br>Integrations | INPUT     | OUTPUT       | UNIT | ACDC_LinkSwitch-II_040108_Rev1-0.xls;<br>LinkSwitch-II Discontinuous Flyback<br>Transformer Design Spreadsheet              |
|------------------------------|-----------|--------------|------|-----------------------------------------------------------------------------------------------------------------------------|
| ENTER APPLICATION            | VARIABLES | 5            |      |                                                                                                                             |
| VACMIN                       | 85        |              | V    | Minimum AC Input Voltage                                                                                                    |
| VACMAX                       | 265       |              | V    | Maximum AC Input Voltage                                                                                                    |
| fL                           | 50        |              | Hz   | AC Mains Frequency                                                                                                          |
| VO                           | 8         |              | V    | Output Voltage (at continuous power)                                                                                        |
| Ю                            | 0.3       |              | A    | Power Supply Output Current<br>(corresponding to peak power)                                                                |
| Power                        |           | 2.40         | W    | Continuous Output Power                                                                                                     |
| n                            |           | 0.70         |      | Efficiency Estimate at output terminals.<br>Under 0.7 if no better data available                                           |
| Z                            |           | 0.50         |      | Z Factor. Ratio of secondary side losses to<br>the total losses in the power supply. Use 0.5<br>if no better data available |
| tC                           |           | 3.00         | ms   | Bridge Rectifier Conduction Time Estimate                                                                                   |
| Add Bias Winding             | YES       | YES          |      | Choose Yes to add a Bias winding to power the LinkSwitch-II.                                                                |
| CIN                          | 9.4       |              | uF   | Input Capacitance                                                                                                           |
| ENTER LinkSwitch-II          |           |              |      |                                                                                                                             |
| Chosen Device                | LNK603    | LNK603       |      | Chosen LinkSwitch-II device                                                                                                 |
| Package                      | DG        | DG           |      | Select package (PG, GG or DG)                                                                                               |
| ILIMITMIN                    |           | 0.19         | A    | Minimum Current Limit                                                                                                       |
| ILIMITTYP                    |           | 0.20         | A    | Typical Current Limit                                                                                                       |
| ILIMITMAX                    |           | 0.22         | A    | Maximum Current Limit                                                                                                       |
| FS                           | 64        | 64.00        | kHz  | Typical Device Switching Frequency at maximum power                                                                         |
| VOR                          |           | 90.72        | V    | Reflected Output Voltage (VOR < 135 V<br>Recommended)                                                                       |
| VDS                          |           | 10.00        | V    | LinkSwitch-II on-state Drain to Source Voltage                                                                              |
| VD                           | 0.4       | 0.40         | V    | Output Winding Diode Forward Voltage<br>Drop                                                                                |
| KP                           |           | 2.70         |      | Ensure KDP > 1.3 for discontinuous mode operation                                                                           |
|                              | PARAMETEI | RS           |      |                                                                                                                             |
| FEEDBACK WINDING             |           |              |      |                                                                                                                             |
| NFB                          |           | 9.00         |      | Feedback winding turns                                                                                                      |
|                              |           | 9.00<br>7.56 | V    | Feedback winding turns<br>Flyback Voltage                                                                                   |



| <b>BIAS WINDING PARAN</b> | IETERS     |          |               |                                                                                                                      |
|---------------------------|------------|----------|---------------|----------------------------------------------------------------------------------------------------------------------|
| VB                        | 7.2        | 7.20     | V             | Bias Winding Voltage. Ensure that VB > VFLY. Bias winding is assumed to be AC-<br>STACKED on top of Feedback winding |
| NB                        |            | 0.00     |               | Bias Winding number of turns                                                                                         |
|                           |            |          |               |                                                                                                                      |
| DESIGN PARAMETERS         | 6          |          |               |                                                                                                                      |
| DCON                      | 4.5        | 4.50     | us            | Output diode conduction time                                                                                         |
| TON                       |            | 4.03     | us            | LinkSwitch-II On-time (calculated at                                                                                 |
|                           |            |          |               | minimum inductance)                                                                                                  |
| RUPPER                    |            | 18.02    | k-ohm         | Upper resistor in Feedback resistor divider                                                                          |
| RLOWER                    |            | 5.96     | k-ohm         | Lower resistor in resistor divider                                                                                   |
|                           |            |          |               |                                                                                                                      |
| ENTER TRANSFORME          | R CORE/CO  | NSTRUCTI | ON VARI       | ABLES                                                                                                                |
| Core Type                 |            |          |               |                                                                                                                      |
| Core                      | EE16       | EE16     |               | Enter Transformer Core. Based on the<br>output power the recommended core sizes<br>are EE13 or EE16                  |
| Bobbin                    |            | EE16_B   | OBBIN         | Generic EE16_BOBBIN                                                                                                  |
| AE                        |            | 19.20    | mm^2          | Core Effective Cross Sectional Area                                                                                  |
| LE                        |            | 35.00    | mm^2          | Core Effective Path Length                                                                                           |
| AL                        |            | 1140.00  | nH/tur<br>n^2 | Ungapped Core Effective Inductance                                                                                   |
| BW                        |            | 8.60     | mm            | Bobbin Physical Winding Width                                                                                        |
| Μ                         | 1          | 1.00     | mm            | Safety Margin Width (Half the Primary to<br>Secondary Creepage Distance)                                             |
| L                         |            | 3.00     |               | Number of Primary Layers                                                                                             |
| NS                        |            | 10.00    |               | Number of Secondary Turns. To adjust<br>Secondary number of turns change DCON                                        |
| DC INPUT VOLTAGE P        | ARAMETER   | S        |               |                                                                                                                      |
| VMIN                      |            | 96.66    | V             | Minimum DC bus voltage                                                                                               |
| VMAX                      |            | 374.77   | V             | Maximum DC bus voltage                                                                                               |
|                           |            | 01-1.11  | v             |                                                                                                                      |
| CURRENT WAVEFORM          | I SHAPE PA | RAMETER  | S             |                                                                                                                      |
| DMAX                      |            | 0.26     |               | Maximum duty cycle measured at VMIN                                                                                  |
| IAVG                      |            | 0.04     | А             | Input Average current                                                                                                |
| IP                        |            | 0.19     | А             | Peak primary current                                                                                                 |
|                           |            | 0.40     | ^             | anima and a suma at                                                                                                  |

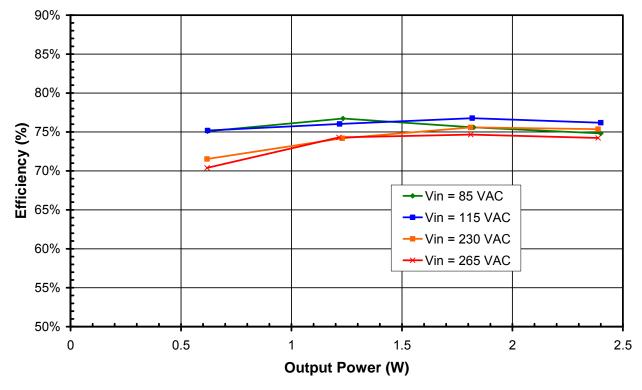




| TRANSFORMER PRIMA | RY DESIGN F | PARAMEI | ERS           |                                                                                                                |
|-------------------|-------------|---------|---------------|----------------------------------------------------------------------------------------------------------------|
| LPMIN             |             | 2049.11 | uH            | Minimum Primary Inductance                                                                                     |
| LPTYP             |             | 2276.79 | uH            | Typical Primary inductance                                                                                     |
| LP_TOLERANCE      |             | 10.00   |               | Tolerance in primary inductance                                                                                |
| NP                |             | 108.00  |               | Primary number of turns. To adjust Primary<br>number of turns change BM_TARGET                                 |
| ALG               |             | 175.68  | nH/tur<br>n^2 | Gapped Core Effective Inductance                                                                               |
| BM_TARGET         | 2200        | 2200.00 | Gauss         | Target Flux Density                                                                                            |
| BM                |             | 2195.97 | Gauss         | Maximum Operating Flux Density<br>(calculated at nominal inductance), BM<br>< 2500 is recommended              |
| BP                |             | 2657.13 | Gauss         | Peak Operating Flux Density (calculated at maximum inducatnce and max current limit), BP < 3000 is recommended |
| BAC               |             | 1097.99 | Gauss         | AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)                                                      |
| ur                |             | 165.37  |               | Relative Permeability of Ungapped Core                                                                         |
| LG                |             | 0.12    | mm            | Gap Length (LG > 0.1 mm)                                                                                       |
| BWE               |             | 19.80   | mm            | Effective Bobbin Width                                                                                         |
| OD                |             | 0.18    | mm            | Maximum Primary Wire Diameter including<br>insulation                                                          |
| INS               |             | 0.04    |               | Estimated Total Insulation Thickness (= 2 *<br>film thickness)                                                 |
| DIA               |             | 0.14    | mm            | Bare conductor diameter                                                                                        |
| AWG               |             | 36.00   |               | Primary Wire Gauge (Rounded to next smaller standard AWG value)                                                |
| СМ                |             | 25.40   |               | Bare conductor effective area in circular mils                                                                 |
| СМА               |             | 393.84  |               | Primary Winding Current Capacity (200 < CMA < 500)                                                             |

| TRANSFORMER SECONDA | <b>NRY DESIGN PARAM</b> | <b>IETER</b> | S                                                                      |
|---------------------|-------------------------|--------------|------------------------------------------------------------------------|
| Lumped parameters   |                         |              |                                                                        |
| ISP                 | 2.05                    | Α            | Peak Secondary Current                                                 |
| ISRMS               | 0.72                    | Α            | Secondary RMS Current                                                  |
| IRIPPLE             | 0.65                    | Α            | Output Capacitor RMS Ripple Current                                    |
| CMS                 | 143.78                  |              | Secondary Bare Conductor minimum<br>circular mils                      |
| AWGS                | 28.00                   |              | Secondary Wire Gauge (Rounded up to next<br>larger standard AWG value) |




| VOLTAGE STRESS PAR                        | RAMETERS |        |       |                                                                                                                |
|-------------------------------------------|----------|--------|-------|----------------------------------------------------------------------------------------------------------------|
| VDRAIN                                    |          | 585.28 | V     | Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance) |
| PIVS                                      |          | 42.70  | V     | Output Rectifier Maximum Peak Inverse<br>Voltage                                                               |
|                                           |          |        |       |                                                                                                                |
| FINE TUNING                               |          |        |       |                                                                                                                |
| RUPPER_ACTUAL                             | 18.2     |        | k-ohm | Actual Value of upper resistor (RUPPER) used on PCB                                                            |
| RLOWER_ACTUAL                             | 6.04     |        | k-ohm | Actual Value of lower resistor (RLOWER) used on PCB                                                            |
| Actual (Measued)<br>Output Voltage (VDC)  | 7.6      |        | V     | Measured Output voltage from first<br>prototype                                                                |
| Actual (Measured)<br>Output Current (ADC) | 0.3      |        | Amps  | Measured Output current from first prototype                                                                   |
| RUPPER_FINE                               |          | 19.16  | k-ohm | New value of Upper resistor (RUPPER) in<br>Feedback resistor divider. Nearest standard<br>value is 19.1 k-ohms |
| RLOWER_FINE                               |          | 5.96   | k-ohm | New value of Lower resistor (RLOWER) in<br>Feedback resistor divider. Nearest standard<br>value is 5.9 k-ohms  |

**Note**: Different spreadsheet revisions may give slightly different spreadsheet values.



### Performance Data

All measurements were taken at room temperature unless otherwise specified, with a 60 Hz input frequency, and at the end of a 6 ft, 0.5  $\Omega$ , 26 AWG output cable.



### 7.6 Efficiency

Figure 6 – Efficiency vs. Output Power.



## 7.7 Active Mode Measurement Data

The power supply passes both Energy Star v1.1 / European Code of Conduct and Energy Star v2 (April 2008) limits.

| % of Full Load   | Efficiency (%) |         |  |  |
|------------------|----------------|---------|--|--|
|                  | 115 VAC        | 230 VAC |  |  |
| 25               | 75.2           | 71.5    |  |  |
| 50               | 76.0           | 74.2    |  |  |
| 75               | 76.8           | 75.6    |  |  |
| 100              | 76.2           | 75.4    |  |  |
| Average          | 76.1%          | 75.1%   |  |  |
| Energy Star v1.1 | 57%            | 57%     |  |  |
| Energy Star v2   | 67%            | 67%     |  |  |

**Figure 7** – Average Active Mode Efficiency.

## 7.7.1 Energy Star v1.1 / CEC (2008)

As part of the U. S. Energy Independence and Security Act of 2007 all single-output adapters, including those provided with products for sale in the USA after July 1, 2008, must meet the Energy Star v1.1 specification for minimum active-mode efficiency and no-load input power. Note that battery chargers are exempt from these requirements except in the state of California, where they must also be compliant.

Minimum active-mode efficiency is defined as the average efficiency at 25%, 50%, 75%, and 100% of rated output power with the limit based on the nameplate output power:

| Nameplate Output (P <sub>NP</sub> ) | Minimum Efficiency in Active Mode of Operation      |
|-------------------------------------|-----------------------------------------------------|
| < 1 W                               | $0.5 \times P_{NP}$                                 |
| $\geq$ 1 W to $\leq$ 49 W           | $0.09 \times \ln (P_{NP}) + 0.5$ [In = natural log] |
| > 49 W                              | 0.84                                                |

| Nameplate Output (P <sub>NP</sub> ) | Maximum No-load Input Power |
|-------------------------------------|-----------------------------|
| All                                 | $\leq$ 0.5 W                |

For single-input voltage adapters the measurement is made at the rated (single) nominal input voltage only (either 115 VAC *or* 230 VAC). For universal input adapters, the measurement is made at both nominal input voltages (115 VAC and 230 VAC).



To meet the standard, the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the CEC/Energy Star v1.1 standard.



## 7.7.2 Energy Star v2 (April 2008)

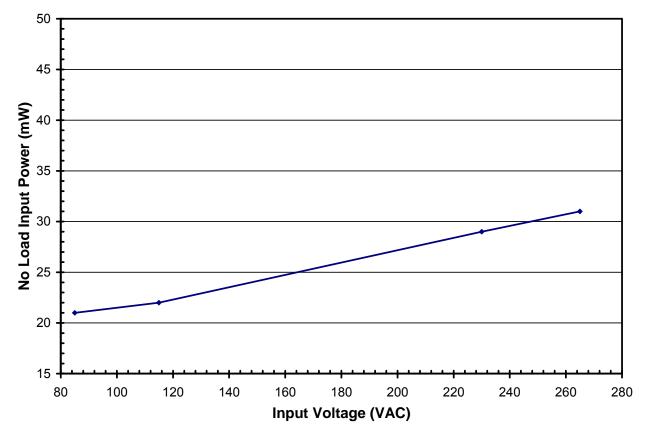
The Energy Star v2 specification (planned to take effect Nov 1, 2008) increases the previously stated requirements.

Standard Models

| Nameplate Output (P <sub>NP</sub> ) | Minimum Efficiency in Active Mode of Operation<br>(Rounded to Hundreds) |
|-------------------------------------|-------------------------------------------------------------------------|
| ≤ 1 W                               | $\geq$ 0.48 $\times$ P <sub>NP</sub> + 0.14                             |
| > 1 W to $\leq$ 49 W                | $\geq 0.0626 \times ln (P_{NP}) + 0.622$ [In = natural log]             |
| > 49 W                              | 0.87                                                                    |

| Nameplate Output (P <sub>NP</sub> ) | Maximum No-load Input Power |
|-------------------------------------|-----------------------------|
| 0 to <50 W                          | $\leq$ 0.3 W                |
| ≥50 to ≤250 W                       | $\leq$ 0.5 W                |

### Low-voltage Models


A low-voltage model is an external power supply (EPS) with a nameplate output voltage of less than 6 V and a nameplate output current greater than or equal to 550 mA.

| Nameplate Output (P <sub>NP</sub> ) | Minimum Efficiency in Active Mode of Operation<br>(Rounded to Hundreds) |
|-------------------------------------|-------------------------------------------------------------------------|
| ≤1 W                                | $\geq 0.497 \times P_{NP} + 0.067$                                      |
| >1 W to ≤49 W                       | ≥ 0.075 × ln (P <sub>NP</sub> ) + 0.561<br>[ln = natural log]           |
| >49 W                               | ≥ 0.86                                                                  |

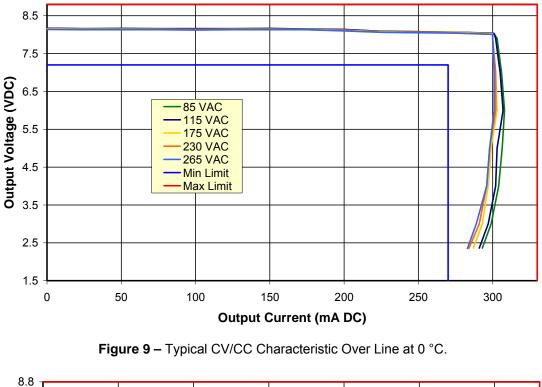
| Nameplate Output (P <sub>NP</sub> ) | Maximum No-load Input Power |
|-------------------------------------|-----------------------------|
| 0 to <50 W                          | $\leq$ 0.3 W                |
| ≥50 to ≤250 W                       | $\leq$ 0.5 W                |

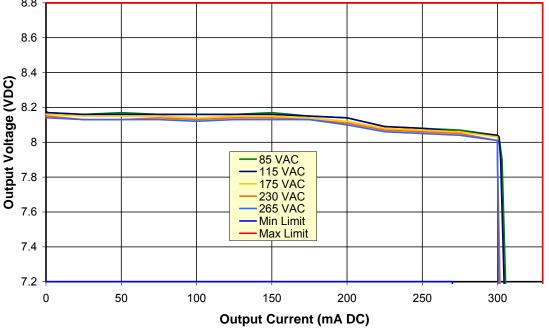
For the latest up-to-date information, please visit the PI Green Room at <u>www.powerint.com</u>.

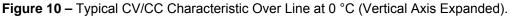




# 7.8 No-Load Input Power


Figure 8 – Typical Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.





## 7.9 Regulation

## 7.9.1 Load

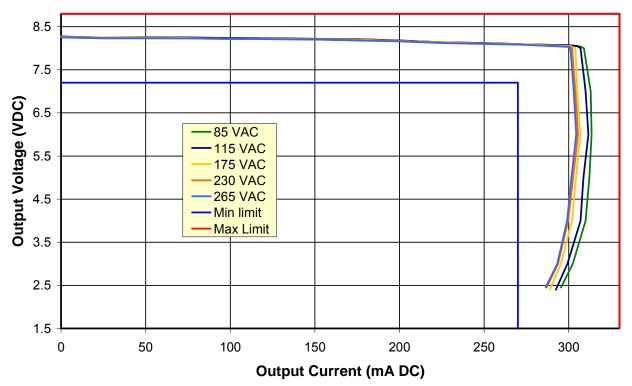
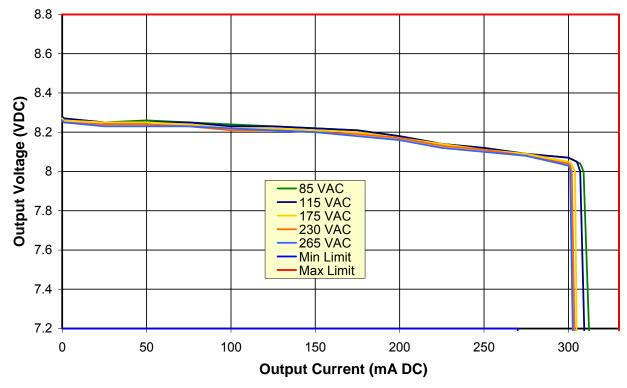
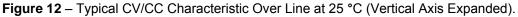
The output characteristic was tested at the end of a 6 ft output cable. The DC resistance of the cable was approximately 0.46  $\Omega$ .

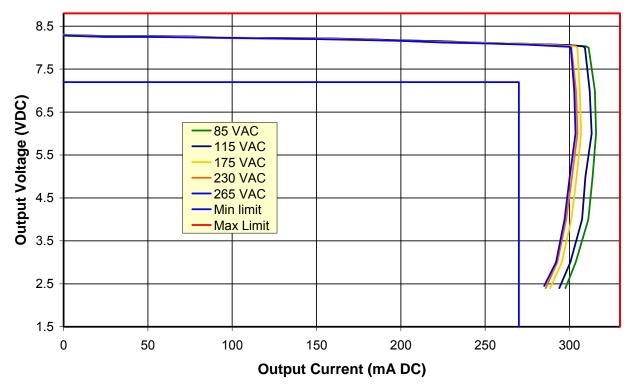




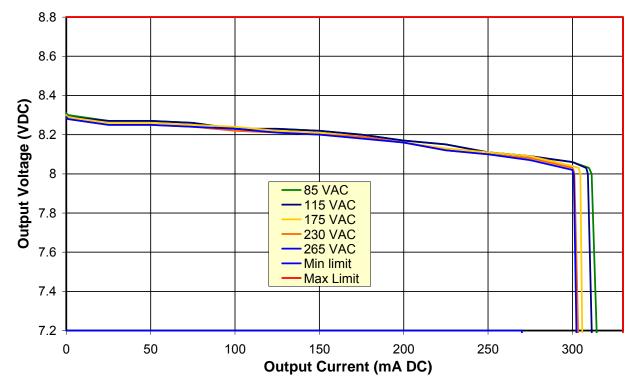


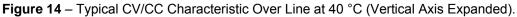




Figure 11 – Typical CV/CC Characteristic Over Line at 25 °C.







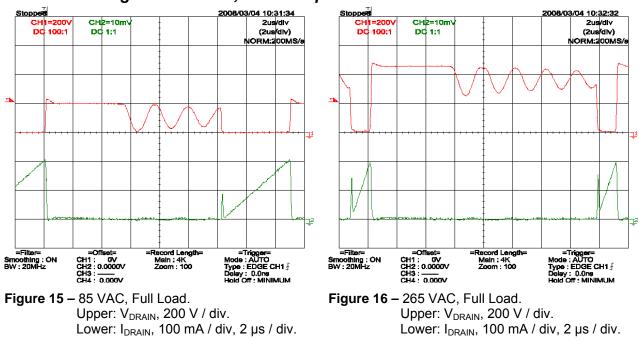






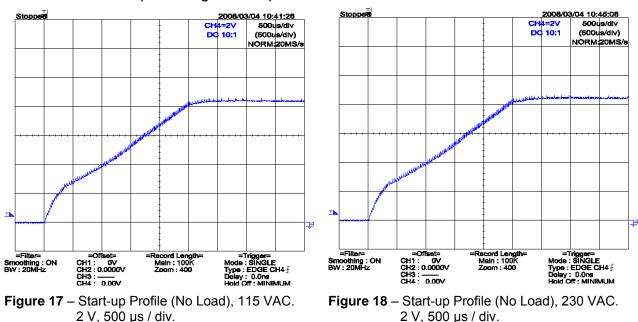



# 8 Thermal Performance


### 8.1 Operating Temperature Survey

Thermal performance was measured inside an enclosure with no airflow, and with the power supply driving a full load. A thermocouple was attached to U1 at its Source Pin.

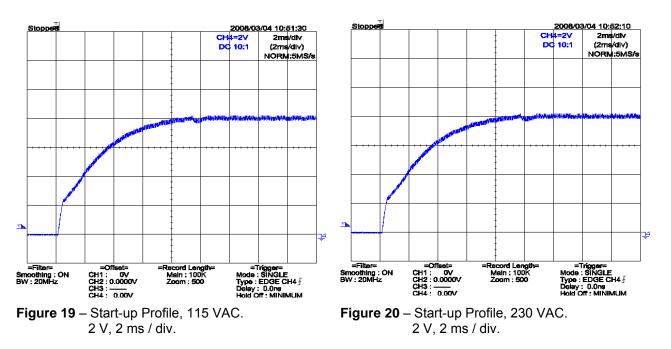
| Item          | 85 VAC            | 115 VAC           | 175 VAC           | 230 VAC           | 265 VAC           |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Ambient       | 40 <sup>°</sup> C |
| U1 Source Pin | 67 <sup>°</sup> C | 65 <sup>°</sup> C | <sup>°</sup> 66   | 68 <sup>°</sup> C | 70 <sup>°</sup> C |




# 9 Waveforms



## 9.1 Drain Voltage and Current, Normal Operation


## 9.2 Output Voltage Start-up Profile



9.2.1 No-Load output voltage start-up characteristic



## 9.2.2 Output Voltage Start-up Characteristic with a Resistive Load (27 $\Omega$ )



Voltage was measured at the load.



# 9.2.3 Output Voltage Start-up Characteristic with a Battery-simulator Load

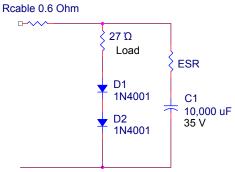
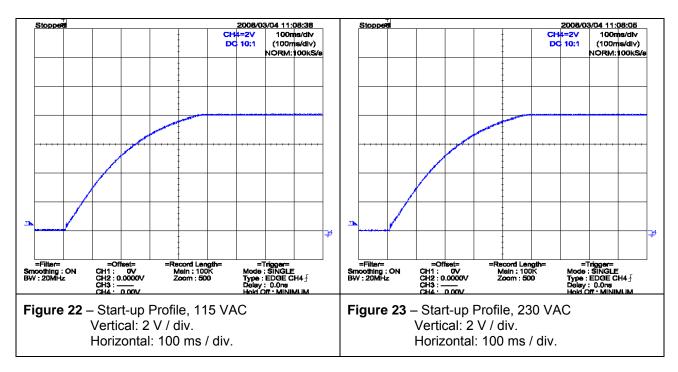
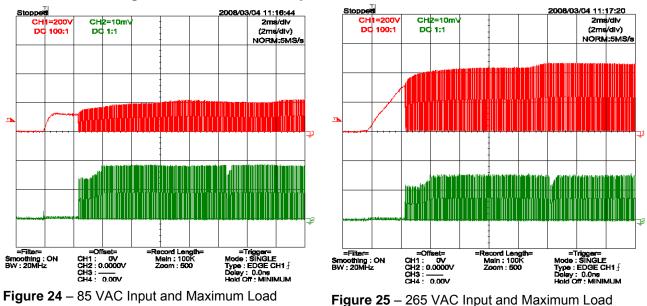
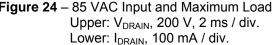



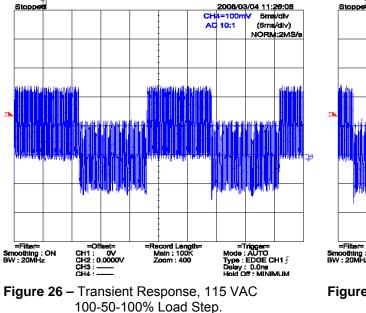

Figure 21 – Battery Simulator Schematic.


The voltage was measured at the PCB.



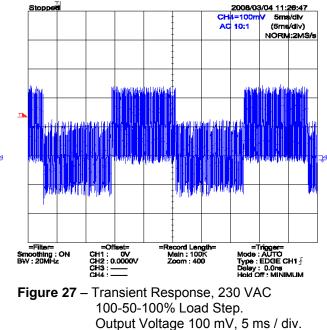



Upper:  $V_{\text{DRAIN}},\,200$  V, 2 ms / div.


Lower: I<sub>DRAIN</sub>, 100 mA / div.



## 9.3 Drain Voltage and Current Start-up Profile








Output Voltage 100 mV, 5 ms / div.

# 9.4 Load Transient Response (50% to 100% Load Step)



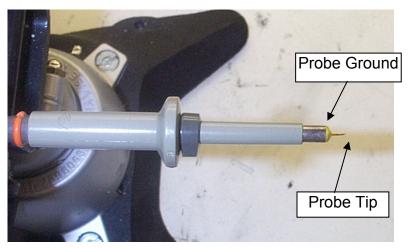


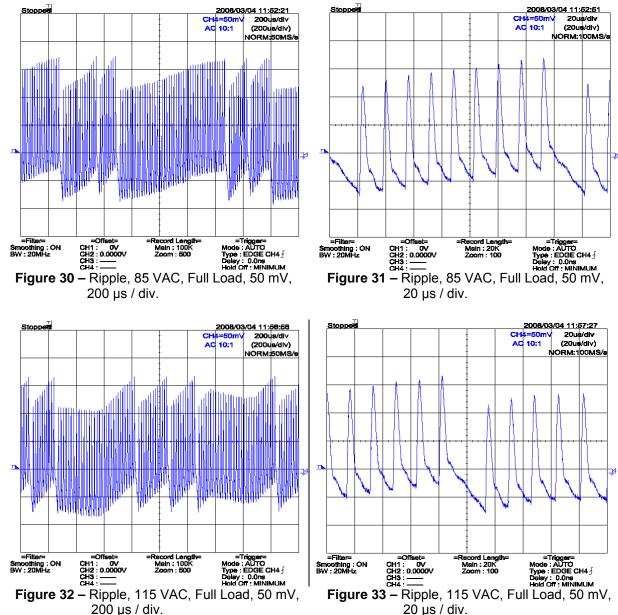
### 9.5 Output Ripple Measurements

### 9.5.1 Ripple Measurement Technique

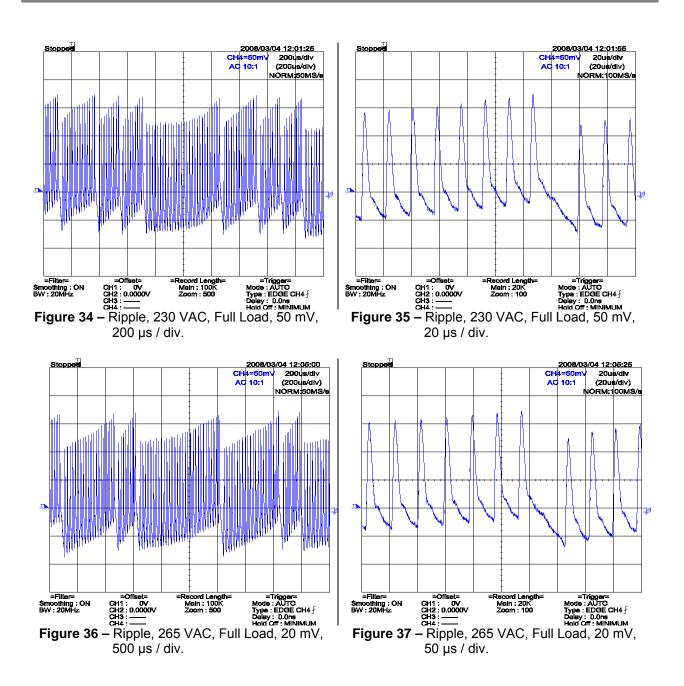
For DC output ripple measurements, use a modified oscilloscope test probe to reduce spurious signals. Details of the probe modification are provided in figures below.

Tie two capacitors in parallel across the probe tip of the 4987BA probe adapter. Use a 0.1  $\mu$ F / 50 V ceramic capacitor and a 1.0  $\mu$ F / 50 V aluminum electrolytic capacitor. The aluminum-electrolytic capacitor is polarized, so always maintain proper polarity across DC outputs.





Figure 28 - Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).




**Figure 29** – Oscilloscope Probe with Probe Master 4987BA BNC Adapter (Modified with Wires for Probe Ground for Ripple measurement and Two Parallel Decoupling Capacitors Added).



## 9.5.2 Measurement Results









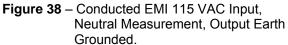
# 10 Line Surge

Differential input line surge (1.2  $\mu$ s / 50  $\mu$ s) testing to specification IEC61000-4-5 was completed on a single test unit. The input voltage was 230 VAC, with a 60 Hz frequency. The supply was operated driving a full load. An additional LED connected to the load verified operation during, and following, each discharge.

| Surge<br>Level<br>(V) | Input<br>Voltage<br>(VAC) | Injection<br>Location | Mode         | Injection<br>Phase<br>(°) | Test Result<br>(Pass/Fail) |
|-----------------------|---------------------------|-----------------------|--------------|---------------------------|----------------------------|
| +500                  | 230                       | L to N                |              | 90                        | Pass                       |
| -500                  | 230                       | L to N                |              | 270                       | Pass                       |
| +750                  | 230                       | L to N                | Differential | 90                        | Pass                       |
| -750                  | 230                       | L to N                | Differential | 270                       | Pass                       |
| +1000                 | 230                       | L to N                |              | 90                        | Pass                       |
| -1000                 | 230                       | L to N                |              | 270                       | Pass                       |
| +6000                 | 230                       | L+N to PE             | Common       | 90                        | Pass                       |
| -6000                 | 230                       | L+N to PE             | Common       | 270                       | Pass                       |

Adding MOV RV1 increases the differential mode ESD immunity to 2 kV.

# 11 ESD


Both air and output contact ESD discharge testing was performed to IEC61000-4-2. In addition to the 10 events per polarity specified in this standard, free-running tests were also performed. More that 50 discharges were applied to the unit, with no failures. The input voltage was 265 VAC, with a 60 Hz frequency. The supply was operated driving a full load. An additional LED connected to the load verified operation during, and following, each discharge.

| Surge<br>Level (kV) | Input<br>Voltage<br>(VAC) | Injection<br>Location | Events    | Test Result<br>(Pass/Fail) |
|---------------------|---------------------------|-----------------------|-----------|----------------------------|
| +15                 |                           | Output<br>RTN         |           |                            |
|                     | 265                       | Output                | 10 + free | Pass                       |
| -15                 | 205                       | Output<br>RTN         | running   | r a55                      |
|                     |                           | Output                |           |                            |



# **12 Conducted EMI**





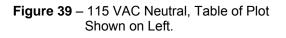
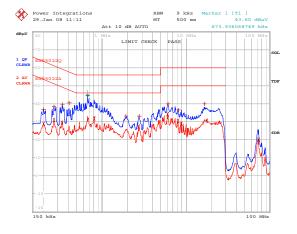




Figure 40 – Conducted EMI 115 VAC Input, Line Measurement, Output Earth Grounded.


|              | PEAK LIST (Final  | Measurement Resul | ts)            |
|--------------|-------------------|-------------------|----------------|
| Trace1:      | EN55022Q          |                   |                |
| Trace2:      | EN55022A          |                   |                |
| Trace3:      |                   |                   |                |
| TRACE        | FREQUENCY         | LEVEL dBµV        | DELTA LIMIT dB |
| 1 Quasi Peak | 673.936068749 kHz | 44.43 N gnd       | -11.56         |
| 1 Quasi Peak | 25.2115041566 MHz | 42.71 L1 gnd      | -17.28         |
| 1 Quasi Peak | 401.705024172 kHz | 39.48 L1 gnd      | -18.33         |
| 1 Quasi Peak | 335.832355405 kHz | 39.32 L1 gnd      | -19.98         |
| 1 Quasi Peak | 269.806440381 kHz | 36.65 N gnd       | -24.46         |
| 1 Quasi Peak | 202.1773373 kHz   | 36.15 N gnd       | -27.36         |
| 1 Quasi Peak | 5.66751514993 MHz | 34.38 L1 gnd      | -25.61         |
| 2 Average    | 667.263434405 kHz | 34.29 N gnd       | -11.70         |
| 2 Average    | 25.4636191981 MHz | 33.91 N gnd       | -16.08         |
| 1 Quasi Peak | 3.27881664913 MHz | 33.66 L1 gnd      | -22.34         |
| 1 Quasi Peak | 72.3876333654 MHz | 31.79 N gnd       |                |
| 2 Average    | 332.507282579 kHz | 29.06 Ngnd        | -20.32         |
| 2 Average    | 6.01618153549 MHz | 27.62 N gnd       | -22.37         |
| 2 Average    | 2.03372014292 MHz |                   | -18.73         |
| 2 Average    | 72.3876333654 MHz | 16.60 N gnd       |                |
| 2 Average    | 38.2909777415 MHz | 5.89 N and        |                |
|              |                   |                   |                |
|              |                   |                   |                |
|              |                   |                   |                |
|              |                   |                   |                |



| Trace1:      | EN550220          |              |                |
|--------------|-------------------|--------------|----------------|
|              |                   |              |                |
| Trace2:      | EN55022A          |              |                |
| Trace3:      |                   |              |                |
| TRACE        | FREQUENCY         | LEVEL dByV   | DELTA LIMIT dB |
| 1 Quasi Peak | 715.396717193 kHz | 44.79 L1 gnd | -11.20         |
| 1 Quasi Peak | 25.7182553901 MHz | 41.92 L1 gnd | -18.07         |
| 1 Quasi Peak | 356.492812486 kHz | 39.84 L1 gnd | -18.96         |
| 1 Quasi Peak | 426.417977756 kHz | 39.36 L1 gnd | -17.95         |
| 1 Quasi Peak | 286.404973226 kHz | 37.44 L1 gnd | -23.17         |
| 1 Quasi Peak | 202.1773373 kHz   | 36.06 N gnd  | -27.45         |
| 1 Quasi Peak | 5.66751514993 MHz | 34.49 L1 gnd | -25.50         |
| 1 Quasi Peak | 72.3876333654 MHz | 33.70 N gnd  |                |
| 1 Quasi Peak | 3.21421100787 MHz | 33.55 L1 gnd | -22.44         |
| 2 Average    | 945.247220176 kHz | 33.54 L1 gnd | -12.46         |
| 2 Average    | 24.7147379243 MHz | 33.48 L1 gnd | -16.51         |
| 2 Average    | 335.832355405 kHz | 29.98 N gnd  | -19.31         |
| 2 Average    | 6.01618153549 MHz | 27.53 N gnd  | -22.46         |
| 2 Average    | 3.27881664913 MHz | 25.01 L1 gnd | -20.98         |
| 1 Quasi Peak | 37.91185915 MHz   | 23.38 L1 gnd |                |
| 2 Average    | 72.3876333654 MHz | 18.64 N gnd  |                |
| 2 Average    | 88.3266692478 MHz | 10.78 N gnd  |                |
| 2 Average    | 37.5364942079 MHz | 5.09 L1 gnd  |                |
|              |                   |              |                |

Figure 41 – 115 VAC Line, Table of Plot Shown on Left.





| EDI          | T PEAK LIST (Final | Measurement Resul   | .ts)           |
|--------------|--------------------|---------------------|----------------|
| Trace1:      | EN550220           |                     |                |
| Trace2:      | EN55022A           |                     |                |
| Trace3:      |                    |                     |                |
| TRACE        | FREQUENCY          | LEVEL dBµV          | DELTA LIMIT dB |
| 1 Quasi Peak | 673.936068749 kHz  | 44.40 L1 gnd        | -11.59         |
| 1 Quasi Peak | 401.705024172 kHz  | 40.60 L1 gnd        | -17.21         |
| 1 Quasi Peak | 16.599731303 MHz   | 40.03 L1 gnd        | -19.96         |
| 1 Quasi Peak | 6.13710678435 MHz  | 39.88 N gnd         | -20.12         |
| 1 Quasi Peak | 335.832355405 kHz  | 39.79 L1 gnd        | -19.50         |
| 1 Quasi Peak | 267.135089486 kHz  | 38.37 N gnd         | -22.83         |
| 1 Quasi Peak | 200.175581485 kHz  | 36.85 N gnd         | -26.74         |
| 1 Quasi Peak | 8.18999279463 MHz  | 36.58 N gnd         | -23.41         |
| 2 Average    | 6.07634335085 MHz  | 34.18 N gnd         | -15.82         |
| 1 Quasi Peak | 2.76855896362 MHz  | 33.25 N gnd         | -22.74         |
| 1 Quasi Peak | 1.93501493419 MHz  | 33.08 L1 gnd        | -22.91         |
| 2 Average    | 806.126927408 kHz  | 31.93 N gnd         | -14.06         |
| 2 Average    | 267.135089486 kHz  | 31.03 N gnd         | -20.17         |
| 2 Average    | 17.7971587654 MHz  | 30.59 N gnd         | -19.40         |
| 2 Average    | 8.10890375706 MHz  | 30.52 N gnd         | -19.47         |
| 2 Average    | 332.507282579 kHz  | 29.60 N gnd         | -19.78         |
| 2 Average    | 8.78078080862 MHz  | 29. <b>0</b> 3 Ngnd | -20.96         |
| 2 Average    | 200.175581485 kHz  | 28.92 N gnd         | -24.67         |
| 2 Average    | 2.74114748873 MHz  | 27.34 N gnd         | -18.65         |
| 2 Average    | 73.111509699 MHz   | 20.01 N gnd         |                |

MEI LNK363; 30VAC with hand Date: 29.JAN.2008 11:11:11

Figure 42 – Conducted EMI 230 VAC Input, Neutral Measurement, Output Earth Grounded.



Figure 44 – Conducted EMI: 230 VAC Input, Line Measurement, Output Earth Grounded.

Figure 43 – 230 VAC Neutral, Table of Plot Shown on Left.

| EDT          | T PEAK LIST (Final | Manager L. Dans 1 | 4-5            |
|--------------|--------------------|-------------------|----------------|
| Trace1:      | EN550220           | Measurement Resul | .(5)           |
|              |                    |                   |                |
| Trace2:      | EN55022A           |                   |                |
| Trace3:      |                    |                   |                |
| TRACE        | FREQUENCY          | LEVEL dByV        | DELTA LIMIT dB |
| 1 Quasi Peak | 673.936068749 kHz  | 44.46 L1 gnd      | -11.54         |
| 1 Quasi Peak | 536.076911993 kHz  | 43.23 L1 gnd      | -12.76         |
| 2 Average    | 680.675429436 kHz  | 32.13 N gnd       | -13.86         |
| 2 Average    | 4.73814079378 MHz  | 30.77 N gnd       | -15.22         |
| 2 Average    | 6.07634335085 MHz  | 34.02 N gnd       | -15.97         |
| 1 Quasi Peak | 401.705024172 kHz  | 40.82 L1 gnd      | -16.99         |
| 2 Average    | 2.76855896362 MHz  | 27.05 N gnd       | -18.94         |
| 2 Average    | 8.10890375706 MHz  | 31.02 N gnd       | -18.97         |
| 2 Average    | 335.832355405 kHz  | 30.03 N gnd       | -19.27         |
| 2 Average    | 16.765728616 MHz   | 30.61 L1 gnd      | -19.38         |
| 1 Quasi Peak | 335.832355405 kHz  | 39.90 L1 gnd      | -19.40         |
| 1 Quasi Peak | 5.95661538167 MHz  | 40.19 L1 gnd      | -19.80         |
| 1 Quasi Peak | 16.765728616 MHz   | 40.05 L1 and      | -19.94         |
| 1 Quasi Peak | 3.96116774068 MHz  | 35.37 L1 gnd      | -20.62         |
| 2 Average    | 1.91585637048 MHz  | 25.34 L1 and      | -20.65         |
| 2 Average    | 3.15087835298 MHz  | 25.11 L1 and      | -20.88         |
| 2 Average    | 9.32097576636 MHz  | 28.60 N and       | -21.39         |
| 1 Quasi Peak | 1.87810643122 MHz  | 34.50 L1 and      | -21.49         |
| 1 Quasi Peak | 267.135089486 kHz  | 38.39 N and       | -22.80         |
| 1 Quasi Peak | 200.175581485 kHz  | 36.97 N and       | -26.62         |
| T WOODILEOK  | 2001110001400 KH2  | Solor In gird     | 20102          |

Figure 45 – 230 VAC Line, Table of Plot Shown on Left.



# **13 Revision History**

| Date      | Author | Revision | Description and changes                                     | Reviewed |
|-----------|--------|----------|-------------------------------------------------------------|----------|
| 15-May-08 | JC     | 1.0      | Initial release                                             | JD       |
| 02-Oct-08 | PV     | 1.1      | Updated Section 2 - Common<br>Mode Line Surge from 2 to 6kV |          |
| 22-Sep-10 | KM     | 1.2      | Updated schematic                                           |          |
|           |        |          |                                                             |          |
|           |        |          |                                                             |          |
|           |        |          |                                                             |          |
|           |        |          |                                                             |          |
|           |        |          |                                                             |          |
|           |        |          |                                                             |          |
|           |        |          |                                                             |          |



#### For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

#### PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2008 Power Integrations, Inc.

### **Power Integrations Worldwide Sales Support Locations**

#### WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com* 

#### CHINA (SHANGHAI)

Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 *e-mail: chinasales* @powerint.com

#### **CHINA (SHENZHEN)**

Room A, B & C 4<sup>th</sup> Floor, Block C Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales*@powerint.com

#### GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com* 

#### INDIA

#1, 14<sup>th</sup> Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-41138020
Fax: +91-80-41138023
e-mail: indiasales @powerint.com

#### ITALY

Via De Amicis 2 20091 Bresso MI – Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com* 

#### JAPAN

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales*@powerint.com

#### KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com* 

#### SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail: singaporesales*@*powerint.com* 

#### TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales*@powerint.com

#### UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales* @powerint.com

#### APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

