

Design Example Report

Title	20 W 4 Output Automotive Power Supply for 800V Systems using InnoSwitch™3-AQ INN3947FQ
Specification	40 VDC – 950 VDC Input; 24.7 V / 240 mA; 3 x 25.5 V/ 550 mA Outputs
Application Emergency Power Supply for Traction Inverter	
Author	Automotive Systems Engineering Department
Document Number	DER-1030Q
Date	March 5, 2025
Revision	A

Summary and Features

- Ultra-compact design for 800 VDC automotive Battery Electric Vehicle (BEV) applications
- Low component count (only 44 electrical components)
- Wide range start-up and operating voltage from 40 VDC to 950 VDC
- >80% full load efficiency across the input voltage range¹
- Accurate secondary-side regulation without optocouplers
- Ambient operating temperature range:-40° C to 85° C
- Comprehensive fault protection including output current limit and short-circuit
- Uses automotive qualified AEC-Q surface mount (SMD) components²
- Low profile only 20.4 mm high

 $^{^1}$ Applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

² AEC-Q200 transformer and input common mode choke qualification belongs to final design.

Table of Contents

1		Introd	luction	5
2		Desig	n Specifications	8
	2.1	Elec	ctrical Specifications	8
	2.2	Isol	ation	9
	2.3	Env	ironmental Specifications	9
3		Schen	natic	.10
4		Circuit	t Description	.11
	4.1	Inp	ut Filter	. 11
	4.2	Hig	h-Voltage Circuit	. 11
	4.3	Low	/ Voltage Circuit	. 12
5		PCB L	avout	.14
6		Bill of	, Materials	.18
7		Trans	former Specification	.20
	7.1	Elec	trical Diagram	. 20
	7.2	Elec	ctrical Specification	. 20
	7.3	Tra	nsformer Build Diagram	. 21
	7.4	Mat	erial List	. 21
	7.5	Win	ding Illustrations	. 22
8		Trans	former Design Spreadsheet	.30
9		Hi-Pot	Testing	.35
1	0	Perfor	mance Data	.37
	10.1	No-	Load Input Power	. 38
	10.2	Effi	ciency	. 39
	10).2.1	Efficiency Across Line	.39
	10).2.2	Efficiency Across Load	.40
	10.3	Loa	d Regulation	. 49
	10).3.1	40 VDC Input	.49
	10).3.2	250 VDC Input	.55
	10).3.3	950 VDC Input	.61
	10.4	Line	e Regulation.	. 67
	10).4.1	Loading Condition: 25.5 V = Max. / 24.7 V = Max	.67
	10).4.2	Loading Condition: 25.5 V = Max. / 24.7 V = Min.	.69
	10).4.3	Loading Condition: $25.5 V = Min. / 24.7 V = Max.$.71
1	1	Therm	nal Performance	.73
	11.1	The	rmal Data at 85 °C Ambient	. 73
	11.2	The	rmal Data at 25 °C Ambient	. 76
1	2	Wave	forms	.78
	12.1	Sta	rt-up Waveforms	. 78
	12	2.1.1	85 °C Ambient	.78
	12	2.1.2	-40 °C Ambient	.84
	12.2	Ste	adv-State Stress Waveforms	. 90
	17	2.2.1	Switching Waveforms at 25 °C Ambient	.90
		<u>-</u>	Cuitching Waysforms at QE *C Ambient	00

12.3	Short-Circuit Response at 85 °C Ambient	
12.4	Load Transient Response at 85 °C Ambient	
12.5	Output Voltage Ripple Measurements	
12.5	5.1 Output Voltage Ripple Measurement Technique	
12.5	5.2 Output Voltage Ripple Waveforms	
12.5	5.3 Output Voltage Ripple vs. Load	
13 O	utput Overload	
13.1	25.5 V Output Overload Capability	136
14 R	evision History	

Disclaimer:

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Parameters, numbers, values, and other technical data included in the technical information were calculated and determined, to our best knowledge, to be in accordance with the relevant technical norms (if any). They may be based on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein.

No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations, or opinions communicated and any liability for any direct, indirect, or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

1 Introduction

This engineering report describes a 4 output 20 W automotive power supply. The design provides three gate-driver outputs that are decoupled with common mode chokes, and one isolated output to serve as an Emergency Power Supply (EPS) output. It is intended for use in 800 VDC battery powered electric vehicles and supports an ultra-wide input range of 40 VDC to 950 VDC. This design uses the 1700 V rated INN3947FQ from the InnoSwitch3-AQ family of ICs in a flyback converter configuration.

Outputs 1 to 3 provides regulated outputs of 25.5 V which serve as low-side gate driver supplies for the traction inverter. All channels are connected through common-mode chokes to the same supply bus which is galvanically isolated from output 4. Galvanic separation between the outputs as well the use of common mode chokes prevents transient current flow between them. Output 4 provides a 24.7 V output for supplying auxiliary loads during an emergency.

The design provides reinforced isolation between the High Voltage DC (HVDC) input to all outputs by observing required creepage and clearances described in IEC 60664 parts 1 and 4. Basic isolation is provided between the gate driver output set and the EPS output

The report contains the power supply specifications, schematic, printed circuit board (PCB) layout, bill of materials (BOM), specification for the magnetics, and performance data.

Figure 1 – Populated Circuit Board, Oblique View of Top Side.

Figure 2 – Populated Circuit Board, Top View.

Figure 3 – Populated Circuit Board, Bottom View.

Figure 4 – Populated Circuit Board, Side View.

The three regulated 25.5 V outputs can deliver a combined total of 14 W continuously at an input voltage range of 250 VDC to 950 VDC which can be used to provide gate power for the current generation of SiC MOSFETs.

At 40 VDC input, the power capability of the 25.5 V gate driver outputs is reduced to 4 W. The 24.7 V (EPS) output can deliver 6 W from 40 VDC to 950 VDC input voltage for a total of 10 W output power at 40 VDC. This is sufficient to keep the inverter supply and control circuits operating and allows the vehicle to decelerate (and be in a safe state) in the event of system failure (functional safety requirement).

The InnoSwitch3-AQ IC maintains regulation by directly sensing the 25.5 V output voltage and providing fast, accurate feedback to the primary-side via the safety isolated FluxLink[™] magneto-inductive communication link. The secondary-side controller simplifies the implementation of synchronous rectification improving overall conversion efficiency (compared to diode rectification)—saving cost and space and eliminating the need for heat sinks.

2 Design Specifications

The following tables represent the minimum acceptable performance for the design. Actual performance is listed in the Performance Data section.

2.1 Electrical Specifications

Description	Symbol	Min.	Тур.	Max.	Units
Input Parameters					
Positive DC Link Input Voltage Referenced to HV-	HV+	40	800	950	VDC
Output Parameters					
25.5 V Output (Total of 3 x Regulated)					
Output Voltage	V _{OUT (25.5 V)}	24.2	25.5	26.8	VDC
Load and Line Regulation	V _{REG (25.5 V)}	-5		+5	%
Output Voltage Ripple Measured on Board	\mathbf{V}_{RIPPLE} (25.5 V)		500		mV
Output Overshoot / Output Undershoot	ΔV OUT (25.5 V)		±5		%
Output Current	Ι _{ΟUT (25.5 V)}			555	mA
Continuous Output Power	Pout(25.5 v)	1.4		14	W
24.7 V Output (1 x Un-Regulated)					
Output Voltage	V OUT (24.7 V)	23.7	24.7	27.4	VDC
Load and Line Regulation	V REG (24.7 V)	-4		+11	%
Output Voltage Ripple Measured on Board	\mathbf{V}_{RIPPLE} (24.7 V)		900		mV
Output Overshoot / Output Undershoot	ΔV _{OUT (24.7 V)}		±6		%
Output Current	Ι _{ΟUT (24.7 V)}			242	mA
Continuous Output Power	Pout(24.7 v)	1.8		6	W
Total Output Power Derating					
Continuous Output Power at 40 VDC Input	Ронт			10	w
Continuous Output Power at 250 VDC to 950 VDC Input	- 001			20	W
Operating Parameters					
Operating Switching Frequency	f _{sw}			58	kHz

 Table 1 – Electrical Requirements.

5-Mar-25

2.2 Isolation

Description	Symbol	Min.	Тур.	Max.	Units
Maximum Blocking Voltage of INN3947FQ	BV _{DSS}			1700	V
System Voltage	VSYSTEM			1200	V
Working Voltage				950	V
Pollution Degree	PD			2	
CTI for FR4	CTI	175			
Rated Impulse Voltage				2.5	kV
Altitude Correction Factor for ha	Cha			1.59	
Basic Clearance Distance Requirement	CLRBASIC	2.4			mm
Reinforced Clearance Distance Requirement	CLRREINFORCED	4.8			mm
Basic Creepage Distance Requirement for PCB	CPG _{BASIC} (PCB)	5.0			mm
Reinforced Creepage Distance Requirement for PCB	CPG _{REINFORCED(PCB)}	10.0			mm
Isolation Test Voltage Between Primary and Secondary- Side for 60s	V _{ISO}	5000			V _{PK}
Partial Discharge Test Voltage	V PD_TEST	1800			V _{PK}

 Table 2 – Isolation Requirements³.

2.3 Environmental Specifications

Description	Symbol	Min.	Тур.	Max.	Units
Ambient Temperature	Ta	-40		85	°C
Altitude of Operation	ha			5500	m
Relative Humidity	RH			85.0	%

Table 3 – Environmental Requirements.

 $^{^{\}rm 3}$ Clearance and creepage distances were derived from IEC 60664-1 and IEC 60664-4.

3 Schematic

Figure 5 – DER-1030Q Schematic.

4 Circuit Description

4.1 Input Filter

The automotive inverter environment is harsh, characterized by high dv/dt and di/dt from the switching action of the power modules. Large common-mode currents are generated across the isolation barrier of the power supply which can interfere with both its operation and that of other inverter blocks, compromising the integrity of signal measurement. The input common-mode choke L200 together with the bypass capacitors C200 to C204 help filter unwanted noise to prevent it from affecting the overall performance of the design.

Common-mode inductor L200 was selected to enable the reference board to withstand the Power Integrations internal Resistance-to-ripple-on-high-voltage-network test. The test injects high frequency ripple onto the high-voltage input to simulate the actual DC-link capacitor ripple seen in a traction inverter. The final value of L200 will depend on the application requirement - higher noise will require an increased inductance value. Consideration should be given to the DC resistance (DCR) of the inductor which increases with higher inductance and will impact the overall efficiency of the design.

Bypass capacitors C200 to C204 were selected so as not to exceed 65% of their voltage rating as well as to maintain enough pad separation to ensure that the design meets creepage and clearance requirements.

4.2 High-Voltage Circuit

The power supply uses a flyback converter topology that provides isolated low-voltage outputs from the high-voltage input. The primary winding of the flyback transformer T200 is connected between the high-voltage DC input and the drain terminal of the 1700 V SiC power switch which is internal to the InnoSwitch3-AQ IC.

An R2CD-type (Resistor-Resistor-Capacitor-Diode) snubber circuit was placed across the primary winding, to limit the drain-source voltage peak during turn-off. Two super-fast diodes (D200 and D203) were placed in series to meet creepage and clearance requirements and ensure that the reverse voltage across the diodes would not exceed 70% of their maximum rating. Capacitors C205 and C206 capture energy from the leakage inductance of transformer T200. The capacitor values were selected to minimize the voltage ripple across the snubber resistor network and maintain nearly constant power dissipation across the switching period. Resistors R203, R204, R206, R207, R208 and R209 dissipate the energy stored in the snubber capacitors. The resistor values were selected such that the average voltage across each does not exceed 80% of their maximum rating and in power dissipation that was below 50% of maximum rating.

During normal operation, the primary side is powered by an auxiliary winding on transformer T200. This improves efficiency and reduces the heating of the InnoSwitch3-AQ IC. The auxiliary winding output is rectified, and DC filtered using diode D204 and capacitor C207. The InnoSwitch3-AQ is self-starting, using an internal high-voltage current source to charge the Bias Power Pin (BPP) capacitors, C208 and C209. Current is injected into the BPP capacitors through resistor R210. Diodes D201, D202, and resistor R205 serve as a primary-sensed

output overvoltage protection (primary OVP) circuit, which injects current to the BPP pin of InnoSwitch3-AQ IC during output overvoltage events, driving the IC to enter auto-restart (AR) if the fault is present.

4.3 Low Voltage Circuit

The secondary-side of the InnoSwitch3-AQ IC provides output voltage sensing, output current sensing, and gate drive for the secondary MOSFET providing synchronous rectification (SR).

Transformer T200 was designed such that at 950 VDC input, inductance is high enough so as to not mis-trigger SOA protection while being capable of delivering the required power at 40 VDC. At 40 VDC, the design was made to operate at CCM to maximize available power. This was done by minimizing the turns ratio. This resulted in an increase to the voltage on the FWD pin. In order to mitigate this and ensure that the FWD pin and VOUT pin rating would not be exceeded, the 25.5 V output winding was split into two and configured as stacked winding.

The voltage across the upper stack winding of 25.5 V output is rectified by the freewheeling diode D101 and is filtered by the capacitors C109 and C110. The voltage across the lower stack of the 25.5 V winding is rectified by SR FET Q100, then filtered by output capacitor C110. An RCD (Resistor-Capacitor-Diode) snubber formed by resistors R105, R106 and capacitor C105 damps the high-frequency ringing across the Drain-Source nodes of the SR FET. Values of C109 and C110 were selected to properly shape the currents of the secondary winding and minimize current imbalance between the upper and lower stacked windings.

The secondary-side controller of the InnoSwitch3-AQ IC also manages the switching of the SR FETs and the primary switch. Timing for the SR circuit is based on the negative edge voltage transition sensed by the Forward (FWD) pin via resistor R100. Capacitor C100 and resistor R100 form a low-pass filter that reduces voltage spikes seen by the FWD pin and ensures that the maximum rating of 150 V is not exceeded.

In continuous conduction mode (CCM) operation, the SR MOSFET is turned off just before the secondary-side controller requests a new switching cycle from the primary. In discontinuous conduction mode (DCM), the SR MOSFET is turned off when the voltage across it exceeds $V_{SR(TH)}$ (~-3.3 mV). Secondary-side control of the primary-side switch prevents cross-conduction, ensuring reliable circuit operation.

The secondary-side of the InnoSwitch3-AQ IC is self-powered from either the secondary winding forward voltage (through R100 and the FWD pin) or by the output voltage (through the VOUT pin). The Bias Power Supply (BPS) capacitor C101 is charged via an internal regulator in both cases. The VOUT pin is supplied by the lower stack of the 25.5 V winding to keep the maximum voltage below the VOUT pin limit of 27 V.

Diodes D102, D104, and resistor R108 form the secondary-side output overvoltage protection circuit. During output overvoltage events, the diodes conduct, and current is injected into the BPS pin of InnoSwitch3-AQ IC, triggering AR. This network protects against faults on the secondary side when the secondary controller is functioning. When the secondary controller is not functional, the use of a primary side BPP pin-based output overvoltage (OV) function is recommended.

The InnoSwitch3-AQ IC has an internally generated precision reference of 1.265 V that is presented on the FB pin. Resistor R112 and R113 form a voltage divider network that provides an analog of the output voltage to the FB pin. Capacitor C103 provides decoupling of high frequency noise. C110 and R109 increase the ripple content of the signal provided to the FB pin for improved transient response and lower output ripple.

The output current sense resistor R116 sets the output current limit. The voltage across R116 is compared to an internal threshold of around 35 mV. Once reached, secondary requests will be inhibited, causing output voltage to drop. The IC will enter auto-restart (AR) operation when the output voltage falls 10% below regulation during Constant Current (CC) mode and recovers when the load current is reduced below the CC limit. Capacitor C106 and resistor R107 form a low-pass filter that reduces the high-frequency noise seen by the IS pin. During output short circuit events, diodes D117 and D103 provide protection to R116 and the IS pin of the InnoSwitch3-AQ IC, respectively by allowing a large amount of current to pass to ground through themselves.

The voltage across the 24.7 V winding of transformer T200 is rectified by the freewheeling diode D100 and is filtered by the capacitors C107, C108, C116 and C120. An RCD snubber formed by resistors R101, R102 and capacitor C102 damps the high-frequency ringing across the diode. Regulation of the 24.7 V output depends on good coupling (low leakage inductance) of its winding to the 25.5 V outputs. This is addressed in the section on transformer design.

5 PCB Layout

Layers:Six (6) (typical for traction inverter control board)Board Material:FR4Board Thickness:1.6 mmCopper Weight:1 oz

Figure 6 – DER-1030Q Top Layer PCB Layout.

Figure 7 – DER-1030Q Mid-Layer 1 PCB Layout.

Figure 8 – DER-1030Q Mid-Layer 2 PCB Layout.

Figure 9 – DER-1030Q Mid-Layer 3 PCB Layout.

Figure 10 – DER-1030Q Mid-Layer 4 PCB Layout.

Figure 11 – DER-1030Q Bottom Layer PCB Layout.

Figure 12 – DER-1030Q Board Assembly (Top).4

Figure 13 – DER-1030Q Board Assembly (Bottom).⁵

^{4, 5} The components marked in red are components that are not populated in the assembly and excluded from the Bill of Materials (BOM) count.

6 Bill of Materials

Item	Qty.	Designator	Description	MFR Part Number	Manufacturer
1	1	C100	330 pF ±5% 630 V Ceramic Capacitor C0G, NP0 1206 (3216 Metric)	CGA5C4C0G2J331J060AA	TDK
2	1	C101	2.2 μF ±10% 50 V Ceramic Capacitor X7R 1206 (3216 Metric)	GCM31CR71H225KA55K	Murata Electronics
3	1	C102	100 pF ±5% 630 V Ceramic Capacitor C0G, NP0 1206 (3216 Metric)	CGA5C4C0G2J101J060AA	TDK
4	1	C103	330 pF ±5% 50 V Ceramic Capacitor C0G, NP0 0603 (1608 Metric)	C0603C331J5GACAUTO	KEMET
5	1	C105	680 pF ±5% 630 V Ceramic Capacitor C0G, NP0 1206 (3216 Metric)	CGA5F4C0G2J681J085AA	TDK
6	1	C106	1 μF ±10% 35 V Ceramic Capacitor X7R 0805 (2012 Metric)	GMK212B7105KGHT	TAIYO YUDEN
7	2	C107, C111	0.47 µF ±10% 100 V Ceramic Capacitor X7R 1206 (3216 Metric)	HMK316B7474KLHT	Taiyo Yuden
8	1	C108	100 μF 35 V Aluminum - Polymer Capacitors Radial, Can - SMD 35mOhm 4000 Hrs @ 125°C	EEH-ZK1V101XP	Panasonic
9	1	C109	470 μF 35 V Aluminum - Polymer Capacitors Radial, Can - SMD 11mOhm 4000 Hrs @ 125°C	EEH-ZS1V471P	Panasonic
10	1	C110	1000 µF 25 V Aluminum - Polymer Capacitors Radial, Can - SMD 11mOhm 4000 Hrs @ 125°C	EEH-ZS1E102UP	Panasonic
11	1	C112	10000 pF ±10% 50 V Ceramic Capacitor X7R 0603 (1608 Metric)	GCM188R71H103KA37J	Murata Electronics
12	1	C116	10 μF ±10% 50 V Ceramic Capacitor X7R 1206 (3216 Metric)	CGA5L1X7R1H106K160AE	TDK
13	4	C117, C118, C119, C208	0.1 μF ±10% 50 V Ceramic Capacitor X7R 0805 (2012 Metric)	CGA4J2X7R1H104K125AE	TDK
14	1	C120	0.1 μF ±10% 50 V Ceramic Capacitor X7R 0603 (1608 Metric)	AC0603KRX7R9BB104	YAGEO
15	5	C200, C201, C202, C203, C204	0.15 µF ±10% 500 V Ceramic Capacitor X7R 1210 (3225 Metric)	C1210X154KCRACAUTO	KEMET
16	2	C205, C206	4700 pF ±20% 250 V Ceramic Capacitor C0G, NP0 1206 (3216 Metric)	C1206C472MAGECAUTO	KEMET
17	1	C207	22 μF 35 V Aluminum - Polymer Capacitors Radial, Can - SMD 100mOhm 4000 Hrs @ 125°C	HHXC350ARA220ME61G	United Chemi-Con
18	1	C209	4.7 μF ±10% 25 V Ceramic Capacitor X7R 0805 (2012 Metric)	C0805C475K3RACAUTO	KEMET
19	2	D100, D101	Diode 600 V 2 A Surface Mount SMBflat	STTH2R06UFY	STMicroelectronics
20	2	D102, D202	Diode 100 V 250 mA Surface Mount SOD-323F	BAS16J,115	Nexperia
21	1	D103	Diode 40 V 350 mA Surface Mount SOD-323	SD103AWS-AU_R1_000A1	Panjit International Inc.
22	2	D104, D201	Zener Diode 9.1 V 500 mW ±5% Surface Mount SOD-123	MMSZ5239B-7-F	Diodes
23	1	D117	Diode 100 V 1 A Surface Mount DO-219AB (SMF)	SS1FH10HM3/H	Vishay
24	2	D200, D203	Diode 1000 V 1 A Surface Mount DO-214AC (SMA)	ACURA107-HF	Comchip Technology
25	1	D204	Diode 200 V 225 mA Surface Mount SOD-123	BAS21GWX	Nexperia
26	1	IC200	CV/CC QR Flyback Switcher IC with Integrated 1700 V Switch and FluxLink Feedback for Automotive Applications	INN3947FQ	Power Integrations
27	3	L101, L102, L103	6 uH Common-Mode Choke 7.00mm x 6.00mm	ACSR0906S060NT	SunLord

28	1	L200	590 uH Common-Mode Choke 19.6 mm x 17.00 mm x 9.9 mm	PM0353NL	Pulse
29	1	Q100	N-Channel 150 V 9.4 A (Ta), 58A (Tc) 1.3 W (Ta) Surface Mount PowerDI5060-8	DMT15H017LPS-13	Diodes
30	1	R100	100 Ohms ±1% 0.5 W, ½ W Chip Resistor 0805 (2012 Metric) Anti-Sulfur, Automotive AEC-Q200, Moisture Resistant, Pulse Withstanding Thick Film	CHP0805AFX-1000ELF	Bourns
31	2	R101, R102	120 Ohms ±5% 0.25 W, ¼ W Chip Resistor 1206 (3216 Metric) Automotive AEC-Q200 Thick Film	RMCF1206JT120R	Stackpole Electronics Inc
32	3	R105, R106, R202	27 Ohms ±1% 0.75 W, ¾ W Chip Resistor 1206 (3216 Metric) Automotive AEC-Q200, Pulse Withstanding Thick Film	ESR18EZPF27R0	ROHM Semiconductor
33	1	R107	10 Ohms ±5% 0.1 W, 1/10 W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200 Thick Film	RMCF0603JT10R0	Stackpole Electronics Inc
34	1	R108	750 Ohms ±5% 0.1 W, 1/10 W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200 Thick Film	RMCF0603JT750R	Stackpole Electronics Inc
35	1	R109	10 kOhms ±5% 0.1 W, 1/10 W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200 Thick Film	ERJ-3GEYJ103V	Panasonic
36	1	R111	0 Ohms Jumper Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film	ERJ-6GEY0R00V	Panasonic
37	1	R112	91 kOhms ±1% 0.1 W, 1/10 W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200 Thick Film	RK73H1JTTD9102F	KOA Speer
38	1	R113	4.7 kOhms ±5% 0.1 W, 1/10 W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200 Thick Film	ERJ-3GEYJ472V	Panasonic
39	1	R116	56 mOhms ±1% 0.25 W, ¼ W Chip Resistor 1206 (3216 Metric) Current Sense Thick Film	RL1206FR-070R056L	YAGEO
40	2	R200, R201	10 Ohms ±1% 0.25 W, ¼ W Chip Resistor 1206 (3216 Metric) Automotive AEC-Q200, Moisture Resistant Thick Film	AC1206FR-0710RL	YAGEO
41	6	R203, R204, R206, R207, R208, R209	470 kOhms ±5% 0.25 W, ¼ W Chip Resistor 1206 (3216 Metric) Automotive AEC-Q200 Thick Film	RMCF1206JT470K	Stackpole Electronics Inc
42	1	R205	100 Ohms ±5% 0.1 W, 1/10 W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200, Moisture Resistant Thick Film	AC0603JR-07100RL	YAGEO
43	1	R210	6.8 kOhms ±1% 0.1 W, 1/10 W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200 Thick Film	ERJ-3EKF6801V	Panasonic
44	1	T200	20 W Power Transformer		Power Integrations

Table 4 – DER-1030Q Bill of Materials⁶.

⁶ All components are AEC-Q qualified except for Q100 DMT15H017LPS-13, common-mode chokes and transformer.

7 Transformer Specification

7.1 Electrical Diagram

Figure 14 – Transformer Electrical Diagram.

7.2 Electrical Specification

Parameter	Conditions	Min.	Тур.	Max.	Unit
Power	Output power secondary-side			20	W
Input Voltage VDC	Flyback topology	40	800	950	V
Switching Frequency	Flyback topology			58	kHz
Duty Cycle	Flyback topology			12.6	%
Np:Ns			3.4		
	WD1 (Pri)		650		
	WD2 (Bias)		190		
Pdc	WD3 (24.7 V)		115		mΩ
NUC	WD4a (25.5 V)		27		
	WD4b (25.5 V)		55		
	Primary side to bias side, Measured at 1 V_{PK-PK} , 100 kHz frequency, between pin 1 to pin 7, with pins 1 & 4 shorted and pins 7 & 8 shorted at 25 °C		33		
Coupling Capacitance	Primary side to 25.5 V side Measured at 1 V_{PK-PK} , 100 kHz frequency, between pin 1 to pin 9, with pins 1 & 4 shorted, pins 10 & 11 shorted, and pins 9 & 12 shorted at 25 °C		85		pF
	Primary side to 24.7 V side Measured at 1 V_{PK-PK} , 100 kHz frequency, between pin 1 to pin 15, with pins 1 & 4 shorted and pins 15 & 16 shorted at 25 °C		74		
Primary Inductance	Measured at 1 V _{PK-PK} , 100 kHz frequency, between pin 1 to pin 4, with all other windings open at 25 $^\circ\text{C}$		618		μH
Part to Part Tolerance	Tolerance of Primary Inductance	-5.0		5.0	%
Primary Leakage Inductance	Measured at 1 V pk-pk, 100 kHz frequency between pin 1 to pin 4, with all other Windings shorted.			6.5	μH

 Table 5 – Transformer electrical specification.

7.3 Transformer Build Diagram

Figure 15 – Transformer Build Diagram.

7.4 Material List

Item	Description	Qty	UOM	Material	Manufacturer
[1]	Bobbin: ATWPEF252815B303T	1	PC	CTI ≥ 600	SunLord
[2]	Core: EFD 25/13/9	2	PCS	3C96 (or equivalent)	Ferroxcube
[3]	WD1 (Pri): 0.3 mm FIW 4, Class F	2500	mm		Elektrisola
[4]	WD2 (Bias): 0.2 mm FIW 4, Class F	350	mm		Elektrisola
[5]	WD3 (24.7 V): 0.4 mm (AWG 26) Triple Insulated Wire	850	mm	Coppor Wiro	Furukawa Electric Co., Ltd.
[6]	WD4a (25.5 V): 0.5 mm (AWG 24) Triple Insulated Wire	300	mm	copper wire	Furukawa Electric Co., Ltd.
[7]	WD4b (25.5 V): 0.5 mm (AWG 24) Triple Insulated Wire	600	mm		Furukawa Electric Co., Ltd.
[8]	3M Polyimide 5413 Amber, width: 0.625in (15.9mm)	400	mm	3M157181 (or equivalent)	3M

 Table 6 – Transformer Bill of Materials.

7.5 Winding Illustrations

	16 9 1 8	Start by removing the unused pins 2, 3, 5, 6, 13, and 14 of the bobbin (Item [1])
Winding Preparation		Position the bobbin on the mandrel such that the primary side (pins 1-8) of the bobbin is on the left side. Winding direction is clockwise direction.
WD1: Primary	Route start lead on slot 1 Image: Pin 1	Route the start lead of WDG1 from pin 1 through slot 1 and then wind 41 turns of wire Item [3] with tight tension, from left to right. Spread the winding evenly along the bobbin's width.

	Solder all terminated pins (pins 1, 4, 7, 8, 9, 10, 11, 12, 15, and 16). Gap one of the core halves (item [2]) and fasten the core tightly to get 618 μ H ± 5% of inductance between pins 1 and 4
Finishing	In fastening the core, it is preferred to use glue instead of tape that is used in the illustration (see blue arrows for the preferred gluing points – 2 points on top and 2 points on the bottom.)

8 Transformer Design Spreadsheet

1	DCDC_InnoSwitch3AQ_Flyb ack_092324; Rev.4.0; Copyright Power Integrations 2024	INPUT	INFO	Ουτρυτ	UNITS	InnoSwitch3-AQ Flyback Design Spreadsheet
2	APPLICATION VARIABLES	I				
3	VOUT	25.5		25.5	V	Output Voltage
4	OPERATING CONDITION 1					
5	VINDC1	950.00		950.00	V	Input DC voltage 1
6	IOUT1	0.785		0.785	Α	Output current 1
7	POUT1			20.02	W	Output power 1
8	EFFICIENCY1			0.85		Converter efficiency for output 1
9	Z_FACTOR1			0.50		Z-factor for output 1
11	OPERATING CONDITION 2					
12	VINDC2	800.00		800.00	V	Input DC voltage 2
13	IOUT2	0.785		0.785	Α	Output current 2
14	POUT2			20.02	W	Output power 2
15	EFFICIENCY2			0.85		Converter efficiency for output 2
16	Z_FACTOR2			0.50		Z-factor for output 2
18	OPERATING CONDITION 3					
19	VINDC3	250.00		250.00	V	Input DC voltage 3
20	IOUT3	0.785		0.785	A	Output current 3
21	POUT3			20.02	W	Output power 3
22	EFFICIENCY3			0.85		Converter efficiency for output 3
23	Z_FACTOR3			0.50		Z-factor for output 3
67	TEMPERATURE_AMBIENT			40.0	°C	System ambient temperature
71	PRIMARY CONTROLLER SELE	CTION		-		
72	ILIMIT_MODE	INCREASED		INCREASED		INCREASED Device current limit mode
73	VDRAIN_BREAKDOWN	1700		1700	V	Device breakdown voltage
74	DEVICE_GENERIC			INN39X7		Device selection
75	DEVICE_CODE	INN3947FQ		INN3947FQ		Device code
76	PDEVICE_MAX			50	W	Device maximum power capability
77	RDSON_25DEG			1.53	Ω	Primary switch on-time resistance at 25°C
78	RDSON_125DEG			3.12	Ω	Primary switch on-time resistance at 125°C
79	ILIMIT_MIN			1.674	Α	Primary switch minimum current limit
80	ILIMIT_TYP			1.800	Α	Primary switch typical current limit
81	ILIMIT_MAX			1.926	Α	Primary switch maximum current limit
82	VDRAIN_ON_PRSW			0.27	V	Primary switch on-time voltage drop
83	VDRAIN_OFF_PRSW			1066	V	Peak drain voltage on the primary switch during turn-off at maximum input DC voltage and allowable leakage ring
84	VCLAMP			116.0	V	Voltage across clamp circuit
85	CU_AREA_INNO			1.00	in2	Primary switch copper cooling area
86	TEMP_INNO_MIN			50.55	°C	Device minimum operating temperature with respect to ambient, observed at 800V VINDC
87	TEMP_INNO_MAX			58.90	°C	Device maximum operating temperature with respect to ambient, observed at 250V VINDC
91	WORST CASE ELECTRICAL PA	RAMETERS		1		
92	FSWITCHING_MAX	37485		37485	Hz	Maximum switching frequency at full load and minimum DC input voltage
93	VOR	86.0		86.0	V	Voltage reflected to the primary winding (corresponding to set-point 1) when the primary switch turns off
94	КР			2.381		Measure of continuous/discontinuous mode of operation
95	MODE OPERATION			DCM		Mode of operation

DER-1030Q 20 W 4 Output Automotive Power Supply

96	DUTYCYCLE			0.126		Primary switch duty cycle
97	TIME ON MIN			0.869	us	Minimum primary switch on-time
98	TIME ON MAX			3.89	lis	Maximum primary switch on-time
00				23 27	u5 UC	Primary switch off-time
55				23.37	us	Minimum primany magnetizing
100	LPRIMARY_MIN			586.7	uH	inductance
101	LPRIMARY_TYP			617.6	uH	Typical primary magnetizing inductance
102	LPRIMARY_TOL	5.0		5.0	%	Primary magnetizing inductance tolerance
103	LPRIMARY_MAX			648.5	uH	Maximum primary magnetizing inductance
105	PRIMARY CURRENT					
106	IAVG_PRIMARY			0.087	Α	Primary switch average current
107	IPEAK_PRIMARY			1.530	Α	Primary switch peak current
108	IPEDESTAL PRIMARY			0.000	Α	Primary switch current pedestal
109	IRIPPLE PRIMARY			1.530	Α	Primary switch ripple current
110	IRMS PRIMARY			0.298	Α	Primary switch RMS current
114	TRANSFORMER CONSTRUCTION	ON PARAMETE	FRS	01200		
115	CORE SELECTION					
116	CORE	FED25		EED25		Core selection
110	CORE	LIDZJ		EED25/13/0		
117	CORE NAME			-3096		Core code
110	AE			-30.90	mm ^ 2	Core cross sectional area
110				50.0	1111117^Z	Core cross sectional area
119				57.0	mm	
120	AL			2000	nH	Ungapped core effective inductance per turns squared
121	VE			3300	mm^3	Core volume
122	BOBBIN NAME			EFD25/13/9 - 2 (P5-S5)		Bobbin name
123	AW			40.2	mm^2	Bobbin window area - only the bobbin width and height are used to assess fit by the magnetics builder
124	BW			16.40	mm	Bobbin width
125	ВН			3.11	mm	Bobbin height
126	MARGIN			0.0	mm	Bobbin safety margin
128	PRIMARY WINDING					
129	NPRIMARY			58		Primary winding number of turns
130	BDEAK			3800	Gauss	Peak flux density
131	BMAY			2885	Gauss	Maximum flux density
132	BAC			1443	Gauss	AC flux density (0.5 x Peak to Peak)
152	DAC			2775	Gauss	AC IIIX defisity (0.5 X Feak to Feak)
133	ALG			184	nH	inductance per turns squared
134	LG			0.361	mm	Core gap length
136	SECONDARY WINDING					
137	NSECONDARY	17		17		Secondary winding number of turns
139	BIAS WINDING					
140	NBIAS			7		Bias winding number of turns
144	PRIMARY COMPONENTS SELE	CTION			1	
145	LINE UNDERVOLTAGE/OVERV	OLTAGE				
146	UVOV Type	UV Only		UV Only		Input Undervoltage/Overvoltage
4.47				,		protection type
147 148	BROWN-IN REQUIRED	4 0.00		40.00	v	Required DC bus brown-in voltage
1.40						
149	UNDERVOLTAGE ZENER DIODE	BZM55C9V1		BZM55C9V1		Undervoltage protection zener diode
150	VZ			9.10	V	Zener diode reverse voltage
151	VR			6.80	V	Zener diode reverse voltage at the maximum reverse leakage current
152	ILKG			2.00	uA	Zener diode maximum reverse leakage current (at high ambient temperatures, typically 125 degC)

153	ILKG_MIN			0.10	uA	Zener diode minimum reverse leakage current (at low ambient temperatures, typically 25 deaC)
154	BROWN-IN ACTUAL			26.91 - 39.47	V	Actual brown-in voltage range using standard resistors considering tolerances due to part and temperature variations
155	BROWN-OUT ACTUAL			24.13 - 35.46	v	Actual brown-out voltage range using standard resistors considering tolerances due to part and temperature variations
156	OVERVOLTAGE PARAMETERS			-	-	
157	OVERVOLTAGE REQUIRED		Info		V	For UV Only design, overvoltage feature is disabled
158	OVERVOLTAGE DIODE		Info			OV diode is used only for the overvoltage protection circuit
159	VF				V	OV diode forward voltage
160	VRRM				V	OV diode reverse voltage
161	PIV				V	OV diode peak inverse voltage
162	LINE_OVERVOLTAGE				V	For UV Only design, line overvoltage feature is disabled
163	DC BUS SENSE RESISTORS	•	1	1	r	
164	RLS_H			1.04	MΩ	Connect six 174 kOhm DC bus upper sense resistors to the V-pin for the required UV/OV threshold
165	RLS_L			124.00	kΩ	DC bus lower sense resistor to the V- pin for the required UV/OV threshold
168	BIAS WINDING				-	
169	VBIAS	9.00		9.00	V	Rectified bias voltage
170	VF_BIAS			0.70	V	Bias winding diode forward drop
171	VREVERSE_BIASDIODE			123.66	V	Bias diode reverse voltage (not accounting parasitic voltage ring)
172	CBIAS			22	uF	Bias winding rectification capacitor
173	CBPP			4.70	uF	BPP pin capacitor
177	SECONDARY COMPONENTS S	ELECTION				
178	FEEDBACK COMPONENTS			1	1	Linney feedback verifter (compared to
179	RFB_UPPER			100.00	kΩ	the output terminal)
180	RFB_LOWER			5.23	kΩ	Lower feedback resistor
181	CFB_LOWER			330	pF	Lower feedback resistor decoupling capacitor
185	MULTIPLE OUTPUT PARAMET	ERS				
186		T	[25.5		
10/		0.540		25.5	V A	Output 1 voitage
100		0.549		0.549	A	Output 1 current
199				14.00	٧٧	Poot mean squared value of the
190	IRMS_SECONDARY1			1.213	A	secondary current for output 1
191	IRIPPLE_CAP_OUTPUT1			1.081	A	waveform for output 1
192	NSECONDARY1			17		Number of turns for output 1
193	VREVERSE_RECTIFIER1		Warning ⁷	303.95	V	Assuming this output is connected to the FWD pin, then the voltage stress may exceed the FWD pin voltage rating of 150V. Increase the VOR to reduce voltage stress and allow for sufficient margin
194	SRFET1	DMT15H01 7LPS-13	Warning	DMT15H01 7LPS-13		Expected voltage stress (including the parasitic ring) on the secondary MOSFET selected exceeds the device

⁷ The warnings on lines 193 and 194 are disregarded since actual SR FET and FWD pin voltage should be 5/17 of the value shown in line 193 (based on the number of turns of the lower stack winding).

DER-1030Q 20 W 4 Output Automotive Power Supply

						BVDSS: pick a MOSFET with a higher BVDSS
195	NUM_SRFET1	1		1		Number of SRFETs in parallel for output 1
196	VF_SRFET1			0.80	V	SRFET typical on-time drain voltage for output 1
197	VBREAKDOWN_SRFET1			150	V	SRFET breakdown voltage for output 1
198	RDSON_SRFET1			37.0	mΩ	SRFET estimated on-time drain resistance at 100°C and VGS=4.4V for
100	DTH1A SDEET1			53.00	°C/W	output 1 SRFET max. thermal impedance for
199				55.00	C/ W	output 1
200	TEMP_SRFET1_MIN			58.3	°C	SRFET minimum operating temperature for output 1 (for each SRFET in parallel) with respect to ambient, observed at 800V VINDC
201	TEMP_SRFET1_MAX			62.0	°C	SRFET maximum operating temperature for output 1 (for each SRFET in parallel) with respect to ambient observed at 950V VINDC
203	OUTPUT 2					
204	VOUT2	24.7		24.7	V	Output 2 voltage
205	IOUT2	0.243		0.243	Α	Output 2 current
206	POUT2			6.01	W	Output 2 power
207	IRMS_SECONDARY2			0.537	Α	Root mean squared value of the secondary current for output 2
208	IRIPPLE_CAP_OUTPUT2			0.479	А	Current ripple on the secondary waveform for output 2
209	NSECONDARY2			17		Number of turns for output 2
210	VREVERSE_RECTIFIER2		Warning ⁸	303.20	v	Taking into consideration the parasitic voltage ring and assuming this output is connected to the Vo/FWD pin, then the actual stress across the SRFET/FWD pin would be 397.95V. Given that the absolute maximum FWD pin voltage rating is 150V, increase the VO
211	SRFET2	DMT15H01 7LPS-13	Warning	DMT15H01 7LPS-13		The voltage stress (including the parasitic ring) on the secondary MOSFET selected may exceed the device BVDSS: pick a MOSFET with a higher BVDSS
212	NUM_SRFET2	1		1		Number of SRFETS in parallel for output 2
213	VF_SRFET2			0.80	V	SRFET typical on-time drain voltage for output 2
214	VBREAKDOWN_SRFET2			150	V	SRFET breakdown voltage for output 2
215	RDSON_SRFET2			37.0	mΩ	SRFET on-time drain resistance at 100°C and VGS=4.4V for output 2
216	RTHJA_SRFET2			53.00	°C/W	SRFET max. thermal impedance for output 2
217	TEMP_SRFET2_MIN			56.0	°C	SRFET minimum operating temperature for output 2 (for each SRFET in parallel) with respect to ambient, observed at 800V VINDC
218	TEMP_SRFET2_MAX			59.8	°C	SRFET maximum operating temperature for output 2 (for each

⁸ The warnings on lines 209 and 210 are disregarded since Output 2 uses a separate secondary winding with a 600 V-rated freewheeling diode.

						SRFET in parallel) with respect to
237				20.01	W	Total power of all outputs
257				20.01	~~	If negative output exists, enter the
238	NEGATIVE OUTPUT	N/A		N/A		output number; e.g. If VO2 is
		,				negative output, select 2
242	INPUT VOLTAGE SET-POINTS	ANALYSIS				
243	TOLERANCE CORNER			-	-	
244	USER_VINDC	40		40	V	Input DC voltage corner to be evaluated
245	USER_ILIMIT	MAX		1.926	Α	Current limit corner to be evaluated
246	USER_LPRIMARY	MIN		586.7	uH	Primary inductance corner to be evaluated
248	OPERATING CONDITION SEL	ECTION				
249	POUT	13.00		13.00	W	Output power to be evaluated
250	EFFICIENCY			0.85		Converter efficiency to be evaluated
251	Z FACTOR			0.50		Z-factor to be evaluated
252	FSWITCHING			58617	Hz	Maximum switching frequency at the output power to be evaluated.
253	КР			0.848		Measure of continuous/discontinuous mode of operation
254	MODE_OPERATION			CCM		Mode of operation
255	DUTYCYCLE			0.689		Primary switch duty cycle
						Primary switch on-time has been
256	TIME_ON		Info	11.750	us	capped at 11./5us and the controller
						a result
257	TIME OFF			5.310	us	Primary switch off-time
259	PRIMARY CURRENT	<u> </u>		51510	40	Thindry officer off diffe
260	IAVG PRIMARY			0.364	А	Primary switch average current
261	IPEAK_PRIMARY			0.918	Α	Primary switch peak current
262	IPEDESTAL_PRIMARY			0.139	Α	Primary switch current pedestal
263	IRIPPLE_PRIMARY			0.778	Α	Primary switch ripple current
264	IRMS_PRIMARY			0.477	А	Primary switch RMS current
266	MAGNETIC FLUX DENSITY					
267	BPEAK			3438	Gauss	Peak flux density
268	BMAX			1601	Gauss	Maximum flux density
269	BAC			679	Gauss	AC flux density (0.5 x Peak to Peak)
271	DEVICE TEMPERATURE	<u>г</u> – г			1	
272	TEMP_INNO			86.0	°C	Device operating temperature with respect to ambient
273	TEMP_SRFET1			123.6	°C	Operating temperature per SRFET of output 1 with respect to ambient
274	TEMP_SRFET2			122.3	°C	Operating temperature per SRFET of output 2 with respect to ambient
275	TEMP_SRFET3			N/A	°C	Operating temperature per SRFET of output 3 with respect to ambient

 Table 7 – DER-1030Q PIXIs Spreadsheet.

9 Hi-Pot Testing

Hi-Pot testing measures the dielectric breakdown of the primary-to-secondary isolation used in the transformer. This test is performed to assess the ability of the insulation to withstand steady state voltage stress.

Figure 16 shows the test profile used to evaluate the transformer of DER-1030Q.

Figure 16 – Hi-Pot Test Profile of DER-1030Q.

The transformer was soaked in varnish and vacuum impregnated to ensure that the varnish fully penetrated the windings. The transformer was then baked in an oven for 2 hours at 85°C. The transformer was isolation-tested at an isolation voltage of 4000 VAC to 5000 VAC with a 5-second ramp-up and 60-second dwell time. The isolation test was made between nodes 1 to 9 at 24 °C ambient, with nodes 1-8 and 9-16 shorted. Refer to Figure 14 for the transformer electrical diagram for more information.

Figure 17 – Isolation Voltage vs. Leakage Current (25 °C Ambient).

Note: The leakage current across the isolation barrier is due to the primary to secondary coupling capacitance. When the high voltage 60 Hz AC test voltage is applied, current flows through this capacitance. Under DC voltage conditions, this leakage current is not present (measured at less than 3 μ A).

10 Performance Data

Notes:

Measurements were taken with the unit-under-test positioned inside a thermal chamber.
The DER-1030Q board was also placed inside a box (within the thermal chamber) to eliminate the effects of any airflow.

Figure 18 – Unit under test placed inside a box to eliminate the effect of airflow.

3. The DER board was allowed to stabilize for 5 minutes at full load at the start of every test. For each loading condition, the DER-1030Q test board was allowed to stabilize for 1 minute before measurements were taken.

Equipment Type	Model Number	Specifications	Manufacturer
Power Supply	HP20 757 152	2 kV/250 mA/1.5 kW	Iseg
Power Supply	IT6333B	0-60 V/3 A x2 Channels, 0-5 V/ 3 A	ITECH
Electronic Load	PEL-2020A	80 V/20 A/100 W DC Electronic Load	GW Instek
Power Meter	66205	600 V/30 A Digital Power Meter	Chroma
Power Meter	WT310E	600 V/20 A Digital Power Meter	Yokogawa
High-Voltage Measurement	TT-SI 9101	70 MHz 700 V Differential Probe	Testec
High-Voltage Measurement	TT-SI 9110	100 MHz 1400 V Differential Probe	Testec
Low-Voltage Measurement	PHT 312	400 V Passive Probe Extended Temperature	PMK
Low-Voltage Measurement	701937	500 MHz 600 V Passive Probe	Yokogawa
Current Measurement	701928	100 MHz 30 Arms Current Probe	Yokogawa
Current Measurement	CWTUM/06/R	30 MHz 120 A _{peak} Rogowski Coil	CWT
Current Measurement	CWTUM/1/R	30 MHz 300 A _{peak} Rogowski Coil	CWT
Thermocouple Measurement	GL840	20-Channel Data Logger	Graphtec
Thermal Image	TiX580	1000°C Thermal Imaging Camera	Fluke
Thermal Chamber	SH-242	Temperature & Humidity Chamber	Espec
Oscilloscope	DLM5058	2.5 GS/s 500 MHz Mixed Signal	Yokogawa

Table 8 – List of Equipment Used for Testing.

10.1 No-Load Input Power

Figure 19 shows the test circuit used for the no-load input power measurement. The voltmeter was placed before the ammeter. This was done to prevent the voltmeter bias current from affecting the input current measurements. A Chroma Digital Power Meter 66205 was used to measure the current and voltage.

Figure 19 - No-Load Input Power Measurement Circuit Configuration.

For each input voltage, the unit was soaked for ten minutes before measurements were made. The leakage current through the DC-Link capacitor was also measured before testing and was subtracted from the measured no-load input current. The voltage across the input inductor was assumed to be negligible due to its very low DCR (40 m Ω) and low input current. AC losses in the inductor were also assumed to be negligible.

Figure 20 – No-load Input Power vs. Input Line Voltage.

10.2 Efficiency

10.2.1 Efficiency Across Line

Efficiency across line describes how the change in input voltage affects the overall efficiency of the unit. The points in the graph were taken at 100% load (10 W at 40 VDC input and 20 W at 250 VDC – 950 VDC input).

Figure 21 – Full Load Efficiency vs. Input Line Voltage.9

⁹ >80% full load efficiency specification applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

10.2.2 Efficiency Across Load

Efficiency across load describes how output loading affects the overall efficiency of the power supply. Each line on the graphs represents the efficiency vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 Voutput load is increased from its minimum to maximum loading condition.

10.2.2.1 40 VDC Input

Figure 22 – Efficiency vs. Total Output Power at 40 VDC Input and 85 °C Ambient.¹⁰

¹⁰ >80% full load efficiency specification applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

Figure 23 – Efficiency vs. Total Output Power at 40 VDC Input and 25 °C Ambient.¹¹

¹¹ >80% full load efficiency specification applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

Figure 24 – Efficiency vs. Total Output Power at 40 VDC Input and -40 °C Ambient.¹²

¹² >75% full load efficiency specification applies at -40° C ambient. Full load efficiency specification across 25° C and 85° C ambient is >80%.

10.2.2.2 250 VDC Input

Figure 25 – Efficiency vs. Total Output Power at 250 VDC Input and 85 °C Ambient.¹³

¹³ >80% full load efficiency specification applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

Figure 26 – Efficiency vs. Total Output Power at 250 VDC Input and 25 °C Ambient.¹⁴

¹⁴ >80% full load efficiency specification applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

Figure 27 – Efficiency vs. Total Output Power at 250 VDC Input and -40 °C Ambient.¹⁵

¹⁵ >75% full load efficiency specification applies at -40° C ambient. Full load efficiency specification across 25° C and 85° C ambient is >80%.

10.2.2.3 950 VDC Input

Figure 28 – Efficiency vs. Total Output Power at 950 VDC Input and 85 °C Ambient.¹⁶

¹⁶ >80% full load efficiency specification applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

Figure 29 – Efficiency vs. Total Output Power at 950 VDC Input and 25 °C Ambient.¹⁷

¹⁷ >80% full load efficiency specification applies across 25° C and 85° C ambient. Full load efficiency specification at -40° C ambient is >75%.

Figure 30 – Efficiency vs. Total Output Power at 950 VDC Input and -40 °C Ambient.¹⁸

¹⁸ >75% full load efficiency specification applies at -40° C ambient. Full load efficiency specification across 25° C and 85° C ambient is >80%.

10.3 Load Regulation

Load regulation describes how a change in load affects output voltage.

10.3.1 40 VDC Input

Figure 31 – 25.5 V Output Voltage vs. Total Output Power at 40 VDC Input and 85 °C Ambient.¹⁹

¹⁹ Each line represents the 25.5 output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 32 – 24.7 V Output Voltage vs. Total Output Power at 40 VDC Input and 85 °C Ambient.²⁰

²⁰ Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a set percentage while the 24.7 Voutput load is increased from its minimum to maximum loading condition.

Figure 33 – 25.5 V Output Voltage vs. Total Output Power at 40 VDC Input and 25 °C Ambient.²¹

²¹ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a set percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 34 – 24.7 V Output Voltage vs. Total Output Power at 40 VDC Input and 25 °C Ambient.²²

 $^{^{22}}$ Each line represents the 24.7 Voutput regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 35 - 25.5 V Output Voltage vs. Total Output Power at 40 VDC Input and -40 °C Ambient.²³

²³ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a set percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 36 – 24.7 V Output Voltage vs. Total Output Power at 40 VDC Input and -40 °C Ambient.²⁴

²⁴ Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a set percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

10.3.2 250 VDC Input

Figure 37 – 25.5 V Output Voltage vs. Total Output Power at 250 VDC Input and 85 °C Ambient.²⁵

²⁵ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a set percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 38 – 24.7 V Output Voltage vs. Total Output Power at 250 VDC Input and 85 °C Ambient.²⁶

²⁶ Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a set percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 39– 25.5 V Output Voltage vs. Total Output Power at 250 VDC Input and 25 °C Ambient.²⁷

 $^{^{27}}$ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 40- 24.7 V Output Voltage vs. Total Output Power at 250 VDC Input and 25 °C Ambient.²⁸

²⁸ Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a set percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 41 – 25.5 V Output Voltage vs. Total Output Power at 250 VDC Input and -40 °C Ambient.²⁹

²⁹ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a set percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 42 – 24.7 V Output Voltage vs. Total Output Power at 250 VDC Input and -40 °C Ambient.³⁰

³⁰ Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a set percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

10.3.3 950 VDC Input

Figure 43 – 25.5 V Output Voltage vs. Total Output Power at 950 VDC Input and 85 °C Ambient.³¹

³¹ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 44 – 24.7 V Output Voltage vs. Total Output Power at 950 VDC Input and 85 °C Ambient.³²

³² Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 Voutput load is increased from its minimum to maximum loading condition.

Figure 45 – 25.5 V Output Voltage vs. Total Output Power at 950 VDC Input and 25 °C Ambient.³³

³³ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 46 – 24.7 V Output Voltage vs. Total Output Power at 950 VDC Input and 25 °C Ambient.³⁴

³⁴ Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5 V output load is maintained at a set percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 47 – 25.5 V Output Voltage vs. Total Output Power at 950 VDC Input and -40 °C Ambient.³⁵

³⁵ Each line represents the 25.5 V output regulation vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 48 – 24.7 V Output Voltage vs. Total Output Power at 950 VDC Input and -40 °C Ambient.³⁶

³⁶ Each line represents the 24.7 V output regulation vs. total output power of the unit under test when the 25.5V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

10.4 Line Regulation

Line regulation describes how the change in input voltage affects the output voltage.

10.4.1 Loading Condition: 25.5 V = Max. / 24.7 V = Max.

Figure 49 – 25.5 V Output Voltage vs. Input Line Voltage.

Figure 50 – 24.7 V Output Voltage vs. Input Line Voltage.

10.4.2 Loading Condition: 25.5 V = Max. / 24.7 V = Min.

Figure 51 – 25.5 V Output Voltage vs. Input Line Voltage.

Figure 52 – 24.7 V Output Voltage vs. Input Line Voltage.

10.4.3 Loading Condition: 25.5 V = Min. / 24.7 V = Max.

Figure 53 – 25.5 V Output Voltage vs. Input Line Voltage.

Figure 54 – 24.7 V Output Voltage vs. Input Line Voltage.

11 Thermal Performance

11.1 Thermal Data at 85 °C Ambient

The unit was placed inside a thermal chamber. The chamber was pre-heated to 85 °C for 30 minutes before turning on the unit-under-test. The following measurements were taken after soaking the unit for 1 hour to allow component temperatures to stabilize.

	Temperature (°C)				
Critical Components	40 VDC 10 W	250 VDC 20 W	950 VDC 20 W		
InnoSwitch3 (IC200)	96	95	113		
Primary Snubber Diode (D203)	92	93	98		
Primary Snubber Resistor (R209)	90	91	93		
Transformer Core (T200)	93	96	102		
Transformer Winding (T200)	94	97	103		
Synchronous Rectifier (SR) MOSFET (Q100)	90	93	97		
SR MOSFET Snubber Resistor (R105)	91	94	99		
25.5 V Stack Diode (D101)	97	107	110		
24.7 V Freewheeling Diode (D100)	95	96	97		
24.7 V Snubber Resistor (R101)	93	94	95		
Output Current Sense Resistor (R116)	89	92	94		
Ambient	86	86	86		

 Table 9 – Summary of DER-1030Q Critical Component Temperatures at 85 °C Ambient.

Figure 55 – Operating Temperature of DER-1030Q Critical Components (40 VDC Input, 10 W Output).

Figure 56 – Operating Temperature of DER-1030Q Critical Components (250 VDC Input, 20 W Output).

Figure 57 – Operating Temperature of DER-1030Q Critical Components (950 VDC Input, 20 W Output).

11.2 Thermal Data at 25 °C Ambient

The following thermal scans were captured using a Fluke thermal imager after soaking the power supply in an enclosure to minimize the effect of airflow for 1 hour.

	Temperature (°C)				
Critical Components	40 VDC 10 W	250 VDC 20 W	950 VDC 20 W		
InnoSwitch3 (IC200)	54	45	70		
Primary Snubber	43	41	53		
Transformer	46	51	64		
Synchronous Rectifier (SR) MOSFET (Q100)	37	40	47		
SR MOSFET Snubber	38	43	56		
25.5 V Stack Diode (D101)	48	63	70		
24.7 V Freewheeling Diode (D100)	47	48	51		
24.7 V Snubber	43	45	50		
Output Current Sense Resistor (R116)	36	41	48		

Table 10 – Summary of DER-1030Q Critical Components at 25 °C ambient.

Figure 58 – Thermal Scans, Top PCB (Left) and Bottom PCB (Right). 40 VDC Input, 10 W Output

Figure 59 – Thermal Scans, Top PCB (Left) and Bottom PCB (Right). 250 VDC Input, 20 W Output

Figure 60 – Thermal Scans, Top PCB (Left) and Bottom PCB (Right). 950 VDC Input, 20 W Output

12 Waveforms

12.1 Start-up Waveforms

The following measurements were taken by connecting the unit to a fully charged DC-link capacitor³⁷ at different input voltages. A constant resistance load configuration was used for all start-up tests.

12.1.1 85 °C Ambient

12.1.1.1 Output Voltage and Current³⁸

 $^{^{37}}$ Inrush current was limited by adding a 10 Ω series resistor between the DC-link capacitor and the unit under test.

³⁸ Voltage dip on the HV+ waveform was due to the line impedance between the DC link capacitor and the unit under test.

 Figure 63 – Output Voltage and Current.

 950 VDC, 25.5 V / 47 Ω, 24.7 V / 102 Ω, 20 W,

 85 °C Ambient.

 CH1: V_{OUT} (25.5 V), 20 V / div.

 CH2: V_{OUT} (24.7 V), 20 V / div.

 CH3: I_{OUT} (25.5 V), 500 mA / div.

 CH4: I_{OUT} (24.7 V), 500 mA / div.

 CH7: V_{IN}, 500 V / div.

 Time: 50 ms / div.

12.1.1.2 Primary Drain Voltage and Current³⁹⁴⁰

³⁹ The time between when HV+ turned on to when the InnoSwitch3 IC started switching was due to the "Wait and Listen" period of the InnoSwitch3 IC.

 $^{^{\}rm 40}$ The current waveforms were measured using a 120 $A_{\rm peak}$ Rogowski coil.

12.1.1.3 SR FET Drain Voltage and Current⁴¹

 41 The current waveforms were measured using a 120 A_{peak} Rogowski coil.

12.1.1.4 25.5 V Stack Diode Voltage and Current⁴²

⁴² The current waveforms were measured using a 300 A_{peak} Rogowski coil.

12.1.1.5 24.7 V Output Freewheeling Diode Voltage and Current⁴³

⁴³ The current waveforms were measured using a 120 A_{peak} Rogowski coil.

Time: 100 ms / div. (500 µs / div. Zoom)

12.1.2 -40 °C Ambient

12.1.2.1 Output Voltage and Current⁴⁴

⁴⁴ Voltage dip on the HV+ waveform was due to the effective line impedance from the DC link capacitor to the unit under test.

 Figure 78 – Output Voltage and Current.

 950 VDC, 25.5 V / 47 Ω, 24.7 V / 102 Ω, 20 W,

 -40 °C Ambient.

 CH1: V_{OUT} (25.5 V), 20 V / div.

 CH2: V_{OUT} (24.7 V), 20 V / div.

 CH3: I_{OUT} (25.5 V), 500 mA / div.

 CH4: I_{OUT} (24.7 V), 500 mA / div.

 CH4: I_{OUT} (24.7 V), 500 mA / div.

 CH7: V_{IN}, 500 V / div.

 Time: 50 ms / div.

12.1.2.2 Primary Drain Voltage and Current^{45, 46}

⁴⁶ The current waveforms were measured using a 120 A_{peak} Rogowski coil.

⁴⁵ The time between when HV+ turned on and the InnoSwitch3 IC starts switching was due to the "Wait and Listen" period of the InnoSwitch3 IC.

12.1.2.3 SR FET Drain Voltage and Current⁴⁷

 $^{\rm 47}$ The current waveforms were measured using a 120 $A_{\rm peak}$ Rogowski coil.

⁴⁸ The current waveforms were measured using a 300 A_{peak} Rogowski coil.

12.1.2.5 24.7 V output Freewheeling Diode Voltage and Current⁴⁹

⁴⁹ The current waveforms were measured using a 120 A_{peak} Rogowski coil.

Time: 100 ms / div. (500 µs / div. Zoom)

12.2 Steady-State Stress Waveforms

Steady-State Switching Waveforms 25 °C Ambient										
Input	25.5 V Output	24.7 V Output	INN3947FQ		SR FET		25.5 V Output Stack Diode		24.7 V Output Freewheeling Diode	
V _{IN} (V)	І _{оит} (mA)	І _{оυт} (mA)	IC200 V _{DS} (V)	V _{STRESS} (%)	Q100 V _{DS} (V)	V _{STRESS} (%)	D101 (Vка)	V _{STRESS} (%)	D100 (Vка)	V _{STRESS} (%)
40	275	242	273	16	23	15	64	11	89	15
	0	0	158	9	14	9	33	5	47	8
250	550	242	460	27	41	28	99	17	148	25
	0	0	383	23	42	28	101	17	151	25
950	550	242	1198	70	128	85	302	50	464	77
	0	0	1098	65	128	85	296	49	460	77

12.2.1 Switching Waveforms at 25 °C Ambient

 Table 11 - Summary of Voltage Stress Analysis at 25 °C Ambient.

12.2.1.1 Primary Drain Voltage and Current

Time: 1 ms / div. (10 µs / div. Zoom)

CH2: I_{D(INNO)}, 1 A / div. Time: 10 µs / div.

 50 The current waveforms were measured using a 120 A_{peak} Rogowski coil.

 $\begin{array}{l} \mbox{CH3: V_{DS (SR FET), 50 V / div.} \\ \mbox{CH4: I}_{D (SR FET), 2 A / div.} \\ \mbox{Time: 1 ms / div. (10 \mbox{ } s / div. Zoom) } \end{array}$

25 °C Ambient. CH3: V_{DS} (SR FET), 50 V / div. CH4: I_D (SR FET), 2 A / div. Time: 10 µs / div.

12.2.1.3 25.5 V Output Stack Diode Voltage and Current⁵¹

⁵¹ The current waveforms were measured using a 300 A_{peak} Rogowski coil.

CH6: I_{K (25.5 V Diode)}, 2 A / div. Time: 1 ms / div. (10 µs / div. Zoom)

CH5: VKA (25.5 V Diode), 100 V / div. CH6: $I_{K (25.5 \text{ V Diode})}$, 2 A / div. Time: 10 µs / div.

12.2.1.4 24.7 V Output Freewheeling Diode Voltage and Current⁵²

 $^{\rm 52}$ The current waveforms were measured using a 120 A_{peak} Rogowski coil.

25 °C Ambient. CH7: V_{KA(24.7 V Diode)}, 50 V / div. CH8: I_{K(24.7 V Diode)}, 2 A / div. Time: 1 ms / div. (10 μ s / div. Zoom) 950 VDC, 25.5 V / Full Load, 24.7 V/ Full 25 °C Ambient. CH7: V_{KA(24.7 V Diode)}, 200 V / div. CH8: I_{K(24.7 V Diode)}, 2 A / div. Time: 10 μs / div.

Steady-State Switching Waveforms 85 °C Ambient										
Input	25.5 V Output	24.7 V Output	INN3947FQ		SR FET		25.5 V Stack Diode		24.7 V Freewheeling Diode	
V _{IN} (V)	І _{оит} (mA)	І _{оит} (mA)	IC200 V _{DS} (V)	V _{STRESS} (%)	Q100 V _{DS} (V)	V _{STRESS} (%)	D101 (Vка)	V _{STRESS} (%)	D100 (Vка)	V _{STRESS} (%)
40	275	242	265	16	25	17	60	10	92	15
	0	0	158	9	13	9	32	5	45	8
250	550	242	460	27	40	27	101	17	144	24
	0	0	389	23	42	28	104	17	151	25
950	550	242	1186	70	126	84	312	52	479	80
	0	0	1103	65	125	83	312	52	482	80

12.2.2 Switching Waveforms at 85 °C Ambient

 Table 12 – Summary of Voltage Stress Analysis at 85 °C Ambient.

12.2.2.1 Primary Drain Voltage and Current⁵³

 53 The current waveforms were measured using a 120 A_{peak} Rogowski coil.

 $\begin{array}{l} \mbox{CH1: $V_{DS(INNO)$}, 500 V / div.$} \\ \mbox{CH2: $I_{D(INNO)$}, 1 A / div.$} \\ \mbox{Time: 1 ms / div. (10 \mbox{ } s / div. Zoom)$} \end{array}$

85 °C Ambient. CH1: V_{DS(INNO)}, 500 V / div. CH2: Ι_{D(INNO)}, 1 A / div. Time: 10 μs / div.

⁵⁴ The current waveforms were measured using a 120 A_{peak} Rogowski coil.

 $\begin{array}{l} \mbox{CH3: $V_{DS(SR \mbox{FET})}$, 50 V / div.} \\ \mbox{CH4: $I_{D(SR \mbox{FET})}$, 2 A / div.} \\ \mbox{Time: 1 ms / div. (10 \mbox{ } s / div. \mbox{Zoom})} \end{array}$

85 °C Amblent. CH3: V_{DS(SR FET)}, 50 V / div. CH4: I_{D(SR FET)}, 2 A / div. Time: 10 μs / div.

⁵⁵ The current waveforms were measured using a 300 A_{peak} Rogowski coil.

CH6: I_{K(25.5 V Diode)}, 2 A / div. Time: 1 ms / div. (10 µs / div. Zoom)

CH5: VKA(25.5 V Diode), 100 V / div. CH6: I_{K(25.5 V Diode)}, 2 A / div. Time: 10 µs / div.

12.2.2.4 24.7 V Freewheeling Diode Voltage and Current⁵⁶

 56 The current waveforms were measured using a 120 A_{peak} Rogowski coil.

CH7: V_{KA(24.7 V Diode)}, 50 V / div. CH8: I_{K(24.7 V Diode)}, 2 A / div. Time: 1 ms / div. (10 μ s / div. Zoom) 950 VDC, 25.5 V / Full Load, 24.7 V / Full Lo 85 °C Ambient. CH7: VkA(24.7 V Diode), 200 V / div. CH8: Ik(24.7 V Diode), 2 A / div. Time: 10 μs / div.

The unit was tested by applying an output short-circuit at the 25.5 V output during normal working conditions and then removing the short-circuit to determine whether the unit would recover and operate normally. During a short-circuit, the expected response is for the unit to enter auto-restart (AR) mode and attempt to recover every 1.7 to 2.11 seconds. The test is done at full load with constant resistance load for both outputs.

12.4 Load Transient Response at 85 °C Ambient

The load transient response describes the response characteristic of the unit under test to sudden load changes. Output voltage waveforms were captured with switching load transient from minimum to maximum and back to minimum. The time duration for the load at each state was to 100 ms with a slew rate of 100 mA / μ s.

Test Conditions (0.1 A / μs Slew Rate, 200 ms Period, MinTypMin.)			Output Overshoot and Undershoot Results			
Input	25.5 V Output	24.7 V Output	25.5 V Output		24.7 V Output	
V _{IN} (V)	І _{оυт} (mA)	I _{оυт} (mA)	mVovershoot		mVovershoot	
40	55 mA – 157 mA – 55 mA	242 mA	219	-256	380	-345
	157 mA	73 mA – 242 mA – 73 mA	246	-276	590	-675
250	55 mA – 550 mA – 55 mA	242 mA	191	-290	990	-1325
	550 mA	73 mA – 242 mA – 73 mA	149	-123	500	-510
950	55 mA – 550 mA – 55 mA	242 mA	253	-458	1045	-1425
	550 mA	73 mA – 242 mA – 73 mA	180	-244	500	-585

Table 13 – Summary of Load Transient Response at 85 °C Ambient.

 Figure 149 – Output Voltage and Current.

 950 VDC, 25.5 V / 55 mA - 550 mA - 55 mA Transient

 Load, 85 °C Ambient.

 CH1: Vour(25.5 V), 500 mV / div.

 CH2: Vour(24.7 V), 2 V / div.

 CH3: Iour(25.5 V), 500 mA / div.

 CH4: Iour(24.7 V), 200 mA / div.

 Time: 100 ms / div.

Load, 85 °C Ambient. CH1: V_{OUT(25.5 V)}, 500 mV / div. CH2: V_{OUT(24.7 V)}, 2 V / div. CH3: I_{OUT(25.5 V)}, 500 mA / div.

CH4: I_{OUT(24.7 V)}, 200 mA / div.

Time: 100 ms / div.

12.5 Output Voltage Ripple Measurements

12.5.1 Output Voltage Ripple Measurement Technique

A modified oscilloscope test probe was used for output voltage ripple measurements to eliminate spurious signals due to pick-up. Figure 126 and Figure 127 below provide details of the probe modification.

A 1 μ F / 50 V ceramic capacitor parallel to the probe tip of a CT2708 probe adapter and GND terminal. A twisted pair of wires, kept as short as possible, were then soldered directly between the probe and the output terminals of the unit under test.

Figure 151 – Oscilloscope Probe Prepared for Ripple Measurement. (Hook Tip and Ground Lead Removed.)

Figure 152 – Oscilloscope Probe with Cal Test CT2708 BNC Adapter. (Modified with wires for ripple measurement, and a parallel decoupling capacitor added.)

12.5.2 Output Voltage Ripple Waveforms

The output voltage ripple waveform was recorded at the output terminals using the ripple measurement probe with decoupling capacitor.

12.5.2.1 Output Voltage Ripple at 85 °C Ambient⁵⁷

⁵⁷ Peak-to-peak voltage measurement recorded in each oscilloscope capture was the worst-case ripple which included both the low frequency and high frequency switching voltage ripple (top portion of each capture).

Figure 155 – Output Voltage Ripple.

950 VDC, 25.5 V / Full Load, 24.7 V / Full Load, 85 °C Ambient. CH1: V_{OUT(25.5 V)}, 200 mV / div. CH2: V_{OUT(24.7 V)}, 200 mV / div. Time: 2 ms / div. (50 μs / div. Zoom).

⁵⁸ Peak-to-peak voltage measurement recorded in each oscilloscope capture was the worst-case ripple which included both the low frequency and high frequency switching voltage ripple (top portion of each capture).

12.5.2.3 Output Voltage Ripple at -40 °C Ambient⁵⁹

⁵⁹ Peak-to-peak voltage measurement recorded in each oscilloscope capture was the worst-case ripple which included both the low frequency and high frequency switching voltage ripple (top portion of each capture).

12.5.3 Output Voltage Ripple vs. Load

Each line on the graphs represents the output voltage ripple vs. total output power of the unit under test.

12.5.3.1 40 VDC Input

Figure 162 – 25.5 V Output Voltage Ripple vs. Total Output Power at 40 VDC Input and 85 °C Ambient.⁶⁰

⁶⁰ Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 163 – 24.7 V Output Voltage Ripple vs. Total Output Power at 40 VDC Input and 85 °C Ambient.⁶¹

⁶¹ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 164 – 25.5 V Output Voltage Ripple vs. Total Output Power at 40 VDC Input and 25 °C Ambient.⁶²

⁶² Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 165 – 24.7 V Output Voltage Ripple vs. Total Output Power at 40 VDC Input and 25 °C Ambient.⁶³

⁶³ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 166 – 25.5 V Output Voltage Ripple vs. Total Output Power at 40 VDC Input and -40 °C Ambient.64

⁶⁴ Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 167 – 24.7 V Output Voltage Ripple vs. Total Output Power at 40 VDC Input and -40 °C Ambient.⁶⁵

⁶⁵ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

12.5.3.2 250 VDC Input

Figure 168 – 25.5 V Output Voltage Ripple vs. Total Output Power at 250 VDC Input and 85 °C Ambient.⁶⁶

⁶⁶ Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 169 – 24.7 V Output Voltage Ripple vs. Total Output Power at 250 VDC Input and 85 °C Ambient.⁶⁷

⁶⁷ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 170- 25.5 V Output Voltage Ripple vs. Total Output Power at 250 VDC Input and 25 °C Ambient.68

⁶⁸ Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 171- 24.7 V Output Voltage Ripple vs. Total Output Power at 250 VDC Input and 25 °C Ambient.⁶⁹

⁶⁹ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 172 – 25.5 V Output Voltage Ripple vs. Total Output Power at 800 VDC Input and -40 °C Ambient.⁷⁰

⁷⁰ Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 173 – 24.7 V Output Voltage Ripple vs. Total Output Power at 800 VDC Input and -40 °C Ambient.⁷¹

⁷¹ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

12.5.3.3 950 VDC Input

Figure 174 – 25.5 V Output Voltage Ripple vs. Total Output Power at 950 VDC Input and 85 °C Ambient.⁷²

⁷² Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 175 – 24.7 V Output Voltage Ripple vs. Total Output Power at 950 VDC Input and 85 °C Ambient.⁷³

⁷³ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 176- 25.5 V Output Voltage Ripple vs. Total Output Power at 950 VDC Input and 85 °C Ambient.⁷⁴

⁷⁴ Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 177- 24.7 V Output Voltage Ripple vs. Total Output Power at 950 VDC Input and 85 °C Ambient.⁷⁵

⁷⁵ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

Figure 178 – 25.5 V Output Voltage Ripple vs. Total Output Power at 950 VDC Input and -40 °C Ambient.⁷⁶

⁷⁶ Each line represents the 25.5 V output ripple vs. total output power of the unit under test when the 24.7 V output load is maintained at a certain percentage while the 25.5 V output load is increased from its minimum to maximum loading condition.

Figure 179 – 24.7 V Output Voltage Ripple vs. Total Output Power at 950 VDC Input and -40 °C Ambient.⁷⁷

⁷⁷ Each line represents the 24.70 V output ripple vs. total output power of the unit under test when the 25.5 V output load is maintained at a certain percentage while the 24.7 V output load is increased from its minimum to maximum loading condition.

13 Output Overload

13.1 25.5 V Output Overload Capability

The unit under test was placed inside a thermal chamber. The chamber was pre-heated to 85 °C and allowed to stabilize for 30 minutes before turning on the unit under test. The unit was also allowed to stabilize for 20 minutes after each change in input voltage. Output voltage and output current measurements were taken 60 seconds after every change in loading condition.

Figure 180 – 25.5 V Output Overload Curve at 40 VDC Input and 100 VDC Input.

Figure 181 – 25.5 V Output Overload Curve at 250 VDC Input and 950 VDC Input.

14 Revision History

Date	Author	Revision	Description & Changes	Reviewed
5-Mar-25	CAM	А	Initial Release.	Apps & Mktg

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' automotive RDHP and DER in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.power.com</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail:_chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com GERMANY (AC-DC/LED Sales) Einsteinring 24 85609 Dornach/Aschheim Germany Tel: +49-89-5527-39100 e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)

Tel: +49-2938-64-39990

e-mail: igbt-driver.sales@

#1, 14th Main Road

Bangalore-560052

Phone: +91-80-4113-8020

e-mail: indiasales@power.com

Vasanthanagar

HellwegForum 1

59469 Ense

power.com

INDIA

India

Germany

ITALY Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

UK

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com

