Circuit Idea **20230201**

Synchronous Rectifier Spike Reduction During Continuous Conduction Mode Operation of a Power Converter

Page 1 of 1

Summary of the Idea

An active switch Q_{AUX} is used to reduce the voltage spike on a synchronous rectifier (SR) Q_{SR} which may occur during continuous conduction mode (CCM) operation of a power converter. The use of the active switch Q_{AUX} also provides zero voltage switching (ZVS) for the turn-on of the primary switch Q1 and reduce primary side switching losses.

Description

Flyback power converters experience a voltage spike on the synchronous rectifier Q_{SR} during CCM operation. The voltage spike is challenging to snub as well as very lossy. An active switch Q_{Aux} is used to reduce the voltage spike and also used to provide ZVS for the turn-on of the primary switch O1.

The active switch Q_{AUX} is turned ON briefly prior to turning on primary switch Q1. When active switch

 Q_{AUX} is turned ON, the voltage on the output winding node FWD rises to the voltage of capacitor C_{Aux} .

As shown in FIG. 1, the capacitor C_{AUX} is coupled across the output winding node FWD and the output voltage V_{O} .

As shown in FIG. 2, the capacitor C_{AUX} is coupled across the output winding node FWD and output return GND.

With the greater voltage on output winding node FWD, the output capacitance C_{OSS} of primary switch Q1 discharges. As such, the primary switch Q1 can be turned ON once the voltage across the primary switch Q1 is near zero to facilitate ZVS. The gate drive signals of the auxiliary switch Q_{AUX} and the primary switch Q1 can be briefly overlapped once the primary switch Q1 is turned on.

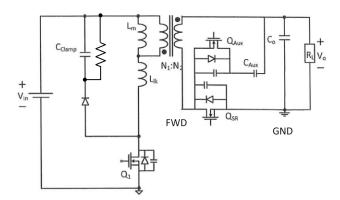


FIG. 1 illustrates the capacitor C_{AUX} coupled between switch Q_{AUX} and output voltage V_O .

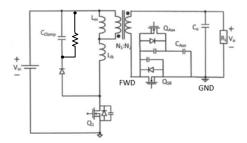


FIG. 2 illustrates the capacitor C_{AUX} coupled between switch Q_{AUX} and output return GND.