InnoSwitch5-Pro产品系列

集成750V和900V PowiGaN开关管、 同步整流和FluxLink反馈技术的数控恒压/ 恒流零电压开关(ZVS)离线式反激开关IC

产品特色

InnoSwitch5-Pro的新特性

- 采用先进的SR FET控制技术的零电压开关(ZVS) 无需有源钳位
- 支持3V至30V的超宽输出电压范围
- 原生支持28V USB PD扩展功率范围(EPR)
- 具有无损耗输入电压检测功能,可进行自适应的DCM/CCM/ZVS控制
- 实现<2%的恒流精度,满足UFCS协议

高度集成, 外形紧凑

- 750V和900V耐压的PowiGaN™初级开关管选项
- 高达140kHz的稳态开关频率降低了变压器尺寸
- 集成同步整流驱动器和次级侧检测
- 反馈方式采用内部集成的FluxLink™技术,且满足HIPOT(高压绝缘) 要求
- 可驱动低成本的N沟道FET串联负载开关
- 集成了3.6V电源,用于为外部微控制器(MCU)供电

通过I2C接口实现数控

- 精确的CV/CC/CP控制
- 动态调整电源输出电压及电流
- 可选择仅采用断续导通(DCM)模式工作以降低同步整流管电压应力
- 具有优化的命令集以降低I2C数据阻塞
- 提供电源状态和故障监测的遥测技术

EcoSmart™ - 高效节能

- 实现>95%的效率
- 在输入电压检测和微控制器(MCU)工作的情况下空载功耗低于30mW

先进的保护/安全特性

- 串联负载开关短路保护
- 关输出故障响应
- 快速的输入欠压/过压保护
- 可设定的输出过压/欠压故障检测和响应
- SR FET门极驱动开路检测
- 带滞回的过温度保护
- 可对用于系统故障情况下的看门狗电路响应时间进行设定

完全符合各项安规要求

- 加强绝缘强度>4000VAC
- 产品100%进行HIPOT测试
- 通过UL1577隔离电压4000VAC(最大值)安全认证。有待通过TUV (EN62368-1和CQC (GB4943.1)安全认证

环保封装

• 无卤素且符合RoHS标准

支持的应用场景

- 高功率密度适配器
- 多协议适配器,包括USB PD + PPS、28V USB PD EPR、QC、VOOC、 VFC、SCP、UFCS
- 直充移动设备充电器
- 工具用动力电池平衡充电器
- 可调恒压及恒流LED镇流器

描述

InnoSwitch™5-Pro系列IC可大幅缩减电源适配器的尺寸。高达140kHz的 开关频率与极高的集成度相结合,可减少典型的适配器方案所需的元件尺 寸和PCB板面积。

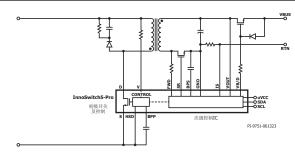


图 1. 典型应用原理图

图 2. 符合安规的大爬电距离InSOP-T28D封装

输出功率对照表1

	•						
		750V Powi	GaN开关管				
퓇号 ^{4,5}	230VAC	±15%	85-264VAC				
_,	适配器2	敞开式 ³	适配器2	敞开式3			
INN5375F	90W	100W	75W	90W			
INN5376F	115W	125W	80W	115W			
INN5377F	135W	145W	90W	135W			
型号4,5		900V PowiGaN开关管					
INN5396F	115W	125W	80W	115W			
	750V PowiGaN开关管						
型号4,5	230VAC	±15%	385VDC(PFC输入)				
	适配器2	敞开式 ³	适配器2	敞开式 ³			
INN5475F	105W	130W	160W	180W			
INN5476F	140W	160W	180W	200W			
INN5477F	170W	190W	200W	220W			
型号4,5		900V Powi	GaN开关管				
INN5496F	140W	160W	180W	200W			

表 1. 输出功率对照表

- 1. 最大输出功率取决于具体设计,并且塑封壳温度必须保持在125℃以下。
- 2. 最小连续输出功率是在典型的特定尺寸无风冷密闭适配器中、环境温度为40℃的条件 下测量得到的。
- 3. 最小峰值功率。
- 4. F封装: InSOP-T28D。
- INN53xx系列适用于通用交流输入设计。

INN54xx系列适用于具有PFC输入的峰值功率设计。

InnoSwitch5-Pro IC采用先进的SR FET控制技术,可在断续导通模式下实 现零电压开关。整体系统效率超过95%,使设计人员能够省去热管理所 需的散热片、导热片和灌封材料,从而进一步减小尺寸,降低元件成本和 制造复杂性。PowiGaN初级开关和控制器、隔离反馈和次级控制器与I2C接 口的集成简化了全数控高效率电源的开发和制造。

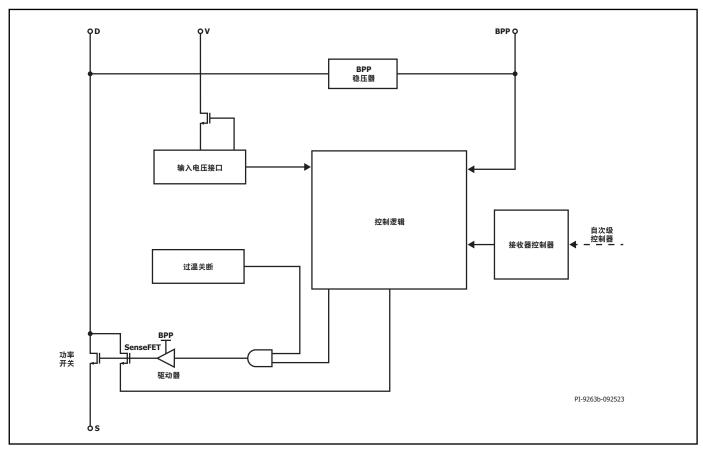


图 3. 初级控制器框图

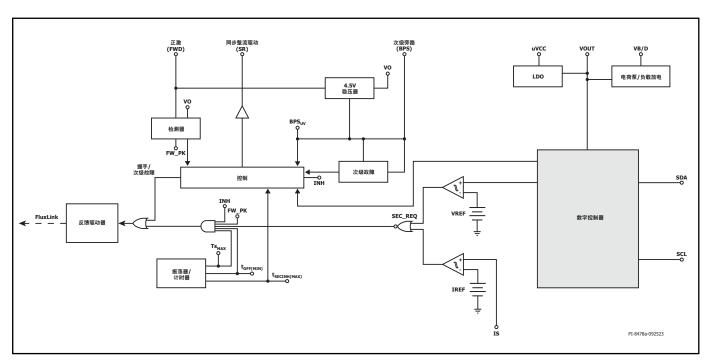


图 4. 次级控制器框图

引脚功能描述

电流检测(IS)引脚(引脚1)

该引脚是电源返回输出端的连接点。外部电流检测电阻应连接在此引脚 与次级接地引脚(引脚2)之间。

次级接地(GND)引脚(引脚2)

该引脚是次级IC的接地参考点。请注意,由于该引脚与电流检测引脚之间连接有电流检测电阻,因此该引脚不是电源输出接地。

NC引脚(引脚3)

保持悬空。不得连接到任何其他引脚。

次级旁路(BPS)引脚(引脚4)

该引脚是外部旁路电容的连接点,用于为次级IC供电。

I2C时钟(SCL)引脚(引脚5)

由母线主控供电的I2C串联通信协议时钟线。

I2C串联数据(SDA)引脚(引脚6)

由母线主控供电的I2C串联通信协议数据线。

外部VCC供电(uVCC)引脚(引脚7)

该引脚是外部控制器的3.6V供电引脚。

VBUS串联开关驱动和负载放电(VB/D)引脚(引脚8)

输出路径NMOS驱动控制脚,用于使能串接在VOUT和VBUS的场效应管(FET)。该引脚还可用于对输出负载电压(VBUS)放电。

同步整流驱动(SR)引脚(引脚9)

门极驱动器输出端,该引脚连接到外部SR FET的门极。

输出电压(VOUT)引脚(引脚10)

直接连接至输出端,为IC次级提供供电电流并检测输出电压稳压情况。 该引脚还具有一个有源/设定下拉电流源。

正激(FWD)引脚(引脚11)

该引脚连接至变压器输出绕组的开关节点,提供有关初级开关的时序信息,并在VOUT低于某个阈值时为IC次级供电。

NC引脚(引脚12-14)

保持悬空。不得连接到任何其他引脚。

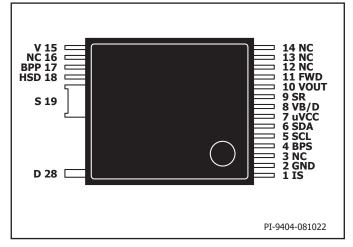


图 5. 引脚布局

输入欠压/过压(V)引脚(引脚15)

该引脚是连接整流桥的AC端或DC端的高压引脚,用于检测电源输入端的欠压及过压情况。当连接到整流桥的AC端时,内部的高压开关会在不检测时断开,以降低功耗。当该引脚连接至GND引脚时,UV/OV保护被禁止。

NC引脚(引脚16)

保持悬空或连接到源极引脚或BPP引脚。

初级旁路(BPP)引脚(引脚17)

外部旁路电容的连接点,用于为初级IC供电。它也是ILIM选择引脚,用于选择标准ILIM或ILIM+1。

HSD引脚(引脚18)

HSD引脚应接地。

源极(S)引脚(引脚19)

这些引脚是功率开关的源极连接点。它们也是初级旁路引脚的接地参 考点。

漏极(D)引脚(引脚28)

此引脚是功率开关的漏极连接点。

InnoSwitch5-Pro功能描述

InnoSwitch5-Pro在一个器件中集成了一个高压功率开关以及初级侧和次级侧控制器。

其架构采用一种由邦定线和内嵌框架结构组成的创造性的磁感耦合反馈 机制(FluxLink),提供一种安全可靠且高性价比的控制方式,从次级侧控制器向初级控制器传递精确的输出电压和输出电流信息。

InnoSwitch5-Pro次级控制器包括磁感耦合至初级接收器的发射器电路、控制电源参数和遥测功能的IPC接口、次级旁路引脚4.5V稳压器、同步整流管FET驱动器、振荡器和时钟功能电路以及众多集成的保护特性。

InnoSwitch5-Pro的初级控制器是准谐振(QR)反激式控制器,它能够在连续导通模式(CCM)下工作。该控制器同时使用变频和可变限流点控制方案。初级控制器包括频率调制振荡器、磁感耦合至次级控制器的接收器电路、限流点控制器、初级旁路引脚5V稳压器、旁路过压检测电路、无损耗输入电压检测电路、限流点选择电路、过温保护和前沿消隐。

图3和图4所示为实现各种重要功能的初级及次级控制器的功能框图。

初级控制器

InnoSwitch5-Pro是一款变频控制器,支持CCM/DCM工作,可提高效率和扩大输出功率

初级旁路引脚稳压器

在功率开关处于关断期间,初级旁路引脚中的内部稳压器会从漏极引脚吸收电流,将初级旁路引脚电容充电至 $V_{\rm BPP}$ 。初级旁路引脚是内部供电电压节点。当功率开关导通时,器件利用储存在初级旁路引脚电容内的能量工作。

此外,当有电流通过一个外部电阻提供给初级旁路引脚时,一个分流稳压器会将初级旁路引脚电压钳位在 V_{SHUNT} 。这样可使InnoSwitch5-Pro通过偏置绕组从外部获得供电,对于5V输出的设计可以将空载功耗降到30mW以下。

初级旁路ILIM设定

InnoSwitch5-Pro IC允许用户通过选择初级旁路引脚的电容值来调节限流点(ILIM)设置。该电容可以使用陶瓷电容。

有2个电容大小可供选择 – 0.47μ F和 4.7μ F,它们分别用来设定标准和升高的初级侧限流点1LIM值。

初级旁路欠压阈值

在稳态工作下,当初级旁路引脚电压下降到 $\sim 4.5 V (V_{BPP} - V_{BPP(H)})$ 以下时,初级旁路引脚欠压电路将停止功率开关。一旦初级旁路引脚电压降到该阈值以下,它就必须升至 V_{SHINT} ,才能重新使能功率开关。

初级旁路引脚过压功能

初级旁路引脚具有可选的过压保护锁存功能。与电阻(与初级旁路引脚电容串联)并联的稳压管通常用于检测初级偏置绕组是否存在过压,以激活此保护机制。当流入初级旁路引脚的电流超过 \mathbf{I}_{SD} 时,器件将锁存关断或禁止功率开关进行开关,经过时间 $\mathbf{t}_{AR(OFF)}$ 后,控制器将重启动并尝试返回稳压状态。

VOUT过压保护也是次级控制器的集成特性之一(参见"输出电压保护")。

过温保护

过温关断电路检测初级开关结温。阈值设为 T_{so} ,提供滞回或锁存关断响应选项。

滞回响应:如果结温度超过这个阈值,功率开关被禁止,直到结温度下降 $T_{\text{SD(H)}}$,功率开关才会重新使能。采用更大的滞回温度可防止因持续故障而使PC板出现过热现象。

锁存关断响应:如果结温度超过这个阈值,功率开关被禁止。只有当初级旁路引脚电压低于 $V_{BPP(RESET)}$ 或者当电压低于输入欠压/过压引脚UV (I_{IV}) 阈值时,锁存才会被复位。



图 6. 归一化初级限流点与频率之间的关系

电流限流工作方式

初级侧控制器使得对限流阈值的控制具有斜坡的特征,与距上一个初级 开关周期结束时的时间成反比(也即,从开关周期结束初级关断时开始 计时的时间)。

这一特性所产生的初级限流点会随着开关频率(负载)增大而增加(图6)。

该算法可充分发挥初级开关的利用率,其好处是,该算法可在接收到反馈开关周期请求时立即对数字反馈信息作出响应。

在满载时,开关周期的最大电流接近100% I_{LIMIT}。随着负载的减小,电流可逐渐减小到最大限流点的30%。达到30%限流点时,限流点就不会继续降低(此时电流已足够小,从而避免音频噪声)。开关周期之间的时间将随着负载降低继续增大。

调制

在调制频率f_M下,归一化限流点在100%和95%之间进行调制。这会使得在平均频率为~100kHz时频率调制的幅度为7kHz左右。

自动重启动

一旦出现故障(例如,输出过载、输出短路或外部元件/引脚故障),InnoSwitch5-Pro进入自动重启动(AR)工作或锁存关断。只有当初级旁路引脚电压低于 $V_{BPP(RESET)}$ 或者当电压低于输入欠压/过压引脚UV (I_{INC}) 阈值时,锁存才会被复位。

在自动重启动模式下,功率开关被禁止时间为 $\mathbf{t}_{\mathsf{AR}(\mathsf{OFF})}$ 。有两种方式进入自动重启动模式:

- 1. 持续出现高于过载检测频率 f_{OVI} 的次级请求且时间超过82ms (t_{AR})。
- 2. 超过t_{AR(SK)}时间没有任何来自次级侧的开关周期请求。

第二种方式还包括为确认通信是否正常初级侧尝试重新启动的情况。虽然在正常工作模式下绝不会出现这种情况,但这在出现系统ESD事件时非常有用,例如,当初级在自动重启动关断时间后发生重启动,由于噪声干扰次级控制器而导致通讯失常时,初级侧在自动重启动关断时间后重新启动即可解决此类问题。

只要发生AC复位,自动重启动就会被复位。

SOA保护

如果有两个这样的连续周期,即在~500ns(消隐时间+限流点延迟时间)内达到限流点I_{LIMT}的110%时,控制器将跳过2.5个周期或~25μs。这可以为变压器复位提供足够的时间,同时并不会延长在大电容负载情况下电源的启动时间。

输入电压监测

输入欠压/过压引脚用于输入欠压及过压检测和保护。

一个检测电阻连接在整流桥后(或者连接至整流桥的AC侧以实现快速 AC复位)的高压直流大电容与输入欠压/过压引脚之间,用来使能该功能。将输入欠压/过压引脚短路至初级GND引脚可禁止该功能。

上电时,在初级旁路引脚充电和ILIM状态锁存后以及开始开关之前,控制器会检查输入欠压/过压引脚的状态,以确定其电压高于电压缓升阈值且低于过压关断阈值。

在正常工作下,如果输入欠压/过压引脚电流低于电压跌落阈值,并且低于电压跌落阈值的同时持续时间超过t_{uv},控制器会进入自动重启动状态。只有当输入欠压/过压引脚电流高于电压缓升阈值时,开关才会恢复。

如果输入欠压/过压引脚电流引脚电流高于过压阈值,控制器也会进入 自动重启动状态。同样,只有当输入欠压/过压引脚电流恢复至正常工 作范围后,开关才会恢复。

输入欠压/过压功能利用输入欠压/过压引脚上的内部高压MOSFET来降低功耗。如果周期关断时间t_{OFF}大于50μs,内部高压MOSFET将断开外部检测电阻与内部IC的连接,以消除检测电阻的电流消耗。输入电压检测功能将在下一个开关周期开始时再次激活。

初级-次级握手

启动时,初级侧最初在没有任何反馈信息的情况下开关(这一点与标准 TOPSwitch™、TinySwitch™或LinkSwitch™控制器的工作方式非常 类似)。

如果在自动重启动导通时间(t_{AR})期间没有收到反馈信号,初级侧将进入自动重启动模式。在正常情况下,次级控制器将通过正激引脚或从输出电压引脚上电,然后接管控制权。此后,次级侧控制开关操作。

如果初级控制器停止开关,或者在次级侧拥有控制权的正常工作情况下 未对次级侧的脉冲请求作出响应时,将启动握手流程确保次级侧能够在 初级侧开始再次开关时接管控制权。当次级侧检测到初级侧提供多于所 要求的脉冲时,也会触发额外的握手。

最可能要求额外握手的情况是,由瞬时输入电压跌落事件导致的初级侧 开关的停止。初级侧恢复工作后,将默认进入启动状态,并尝试检测来 自次级侧的握手脉冲。

如果次级侧检测到初级侧未对8个连续周期的请求作出响应,或者如果次级侧检测到初级侧在收到4个或更多连续周期请求的情况下未进行开关,次级控制器将再次启动握手程序。这种模式可以在初级侧开关时提供额外的SR MOSFET交越导通保护。这种保护模式还可以保证在次级拥有控制权而初级被复位的情况下输出不出现过压。

等待和侦听

当初级侧在从输入电压故障(欠压或过压)或自动重启动初次恢复上电后重新开关时,它将恢复控制并要求成功完成握手,以将控制权移交给次级控制器。

作为额外的安全措施,初级侧在开关之前将暂停一段时间,时长等于自动重启动导通时间 t_{AR} (~82ms)。在此"等待"期间,初级侧将"侦听"次级侧的请求。如果接收到两个间隔~30 μ s的连续次级侧请求,初级侧将推断次级侧正在控制,并开始以从控制器的模式进行开关。如果在 t_{AR} "等待"期间没有握手脉冲,初级侧将开始以初级控制器的模式进行开关,直至接收到握手脉冲。

次级控制器

如图4中的电路框图所示,IC由4.5V (V_{BPS})稳压器供电,后者则由VOUT 或FWD供电。次级旁路引脚连接至外部去耦电容,并从内部稳压电路进行馈电。

正激引脚还连接到下降沿检测电路,用于握手及连接到同步整流驱动引脚的SR FET开通时序控制。在断续模式下,正激引脚电压用于确定何时关断SR FET。这个时间点发生在SR FET的R_{DS(ON)}电压降至零伏时。

在连续导通模式(CCM)下,SR FET会在发送下一个开关周期请求之前关断,这可以提供出色的同步整流工作,防止可能出现的交越导通现象。

输出电压在VOUT引脚上进行调整,启动时默认为5V。

连接在电流检测引脚和次级接地引脚之间的外部电流检测电阻用于调整 恒流工作模式下的输出电流。

可设定电源和电流

工作电压和电流设置点可完全通过I²C接口进行设定。输出电压完全可由用户设定,范围为3V至30V。IC的快速响应反馈环路具有10mV (ΔV_{OUT})的电压变化精度。可设定电流设置点的工作范围为15%至100%,设定步长为满量程电流的0.52%。低于5V且负载电流小于50mA时,由于工作频率非常低,10mV的电压命令步长可能会导致非单调性。

最小关断时间

次级控制器利用与初级侧的FluxLink连接来发出开关请求。次级周期请求的最大频率受到最小周期关断时间t_{OFF(MIN)}的限制。这是为了确保在初级侧导通后有足够的复位时间为负载提供能量。

最大开关频率

次级控制器的最大开关请求频率为f_{sreo}。

内部uVCC生成、母线开关驱动器和放电

内部LDO为MCU生成3.6V uVCC,从而简化系统设计。InnoSwitch5-Pro还具有一个内部驱动器,可确保源极电压高达30V的N沟道FET串联母线开关的导通。使能母线开关的VB/D引脚也可配置为负载的放电通路。

可设定保护功能

用户可设定保护功能包括输出欠压(UV)和过压(OV)保护以及过温保护。

UV/OV阈值是动态可设定的。用户可以对这些保护进行四种响应设定,包括自动重启动、锁存关断、关输出和无响应。自动重启动(AR)或锁存关断(LO)响应本身不会断开串联母线开关。必要时,I²C主控必须发送命令将其断开。

次级控制器还具有在检测到一个或多个故障时产生中断信号的功能。SCL引脚被下拉~55µ,以产生MCU中断。

在MCU与次级控制器失去通信的情况下,看门狗计时器触发复位,重新达到安全的5V状态,并断开串联母线开关。

遥测特性

控制器与MCU通信,以报回电源状态。输出电压和电流由内部ADC测量并通过I²C提供给MCU。遥测特性还涵盖恒压、恒流和恒功率设置点、过压/欠压阈值、所有保护设置、中断状态和完整的故障状态。

频率软启动

启动时,初级控制器的最大开关频率限制在f_{sw},而限流点则为对应 100kHz开关请求频率下流限值的75%。

完成握手后,次级控制器在10ms左右的时间内将开关频率由 f_{sw} 线性渐升至 f_{speo} 。

如果启动时发生短路或过载,器件将直接进入CC(恒流)模式。在握手后软启动计时器结束之前,如果输出电压没有超过3.6V,器件将进入自动重启动(AR)状态。

如果输出电压在软启动时间内达到稳压,将立即中止频率渐升,次级控制器可以全频工作。这样在输出达到稳压后突然出现瞬态负载变化时,可使控制器维持稳压能力。只有在准谐振检测程序工作时频率渐升才会被中止。

最大次级侧抑制时间

次级侧对初级侧的开关控制是有所约束的以保证工作于最大频率以下并确保最小关断时间。除了这些制约因素外,在初级开关的导通时间周期内(周期请求发出至检测到正激引脚下降沿之间的时间)也会抑制次级开关请求。开关请求之后未检测到正激引脚下降沿的最大允许时间为~30µs。

SR禁止保护

在每个周期内,SR只有在次级控制器已经发送了一个开关请求,同时在正激引脚上检测到下降沿的情况下才能工作。当电流检测引脚上的电压超过恒流阈值约3倍时,SR FET驱动将被禁止,直到浪涌电流减小到额定水平为止。

在SRZVS工作模式下,建议将0x0E09写入命令寄存器地址0x38(具有奇偶校验),以在初级侧无次级开关请求时异常工作或有交越导通事件等情形时关断同步整流驱动。检测基于正激引脚上的信号,如果正激引脚信号的振荡电压低于接地电压时(<0V,在DCM工作模式下),这可能导致SR门极驱动在随后的开关周期中被禁止。建议改进正激引脚信号,使其在正常工作期间不会出现任何低于接地的DCV振荡,以避免触发SR门极驱动禁止保护。在此类设计中,上述命令的位[2:0]可以按1b′1的步长递增,以避免在正常工作条件下触发此保护功能。

当SR门极驱动器因该保护功能而被禁止时,准谐振开关也会被禁止,并且一旦故障排除,SR门极驱动器和准谐振开关都会自动恢复。如果该保护功能在某些条件下干扰正常工作,且非所期望的效果,则可以通过将0x0201写入0x38(具有奇偶校验)命令寄存器来禁止它。

在非SRZVS工作模式下,建议将0x0A09写入命令寄存器地址0x38(具有 奇偶校验)以使能该保护功能。要禁止该保护功能,将0x0201写入同一 命令寄存器。

SR静态下拉

为确保在次级侧没有控制权的情况下SR门极保持低电平,同步整流驱动引脚具有内部常"导通"状态的器件可将引脚拉低,以降低SR门极上由正激引脚电容耦合所导致的任何电压。

SR开路保护

为了防止发生同步整流驱动引脚开路系统故障,次级控制器提供相应保护模式,确保同步整流驱动引脚连接至外部FET。如果同步整流驱动引脚的外部电容容值低于~200pF,器件将认为同步整流驱动引脚处于"开路"状态,因而不提供FET驱动。如果检测到引脚电容容值高于~200pF,控制器将认为已连接SR FET。

如果检测到同步整流驱动引脚处于开路状态,次级控制器将停止从初级 控制器请求脉冲,以启动自动重启动。

如果同步整流驱动引脚在启动时已接地,将禁止SR驱动功能,同时也会禁止同步整流驱动引脚开路保护模式。

使用同步整流管在DCM模式下实现动态可设定的ZVS工作

为了提高变换效率并消除开关损耗,InnoSwitch5-Pro IC采取一种实现初级开关管零电压开关的方式,即在DCM工作模式下发送开关请求前,短时间使能同步整流管。在此期间,励磁电流以由初级反射输出电压决定的速率沿负方向充电。在SR导通时间结束时,磁化能量将开始对初级开关上的漏极节点电容进行放电,以在每个导通周期之前强制初级功率开关两端的电压为零。该工作模式仅在断续导通模式下可用,当有CCM开关请求时,该功能自动禁止。通过发送12C命令可以强制功率变换器以仅DCM模式工作。使能SR-ZVS模式也有利于同步整流管,因为当初级开关导通时,它可以限制同步整流管两端的峰值电压。请参见图7。

这种工作模式不会检测初级侧的励磁振荡波峰的位置,而是使用正激引脚的谷值电压(当它低于输出电压水平时)来启动SR-ZVS工作。该模式的IPC设定命令详情见数据手册的命令寄存器部分。

SRZVS工作模式利用输出能量实现初级功率开关管的零电压开关。这种工作模式在高输入电压和较高负载条件下使用时非常有利,因为它具有足够的反射输出电压,可在短时间内沿负方向对励磁电流进行充电。

在SR-ZVS模式下,需要在初级钳位电路中添加一个TVS二极管,以限制 InnoSwitch5-Pro初级开关管在ESD、EFT等异常动态事件期间的峰值漏 极电压。

智能准谐振模式开关工作

为了提高变换效率和降低开关损耗,InnoSwitch5-Pro IC可在初级开关的电压接近其最小电压时强制进行开关,此时,变换器在断续导通模式 (DCM)下工作。在DCM模式下准谐振开关自行工作,而在变换器进入连续导通模式(CCM)时准谐振工作则自行停止。请参见图8。

这种工作模式不会检测初级侧的励磁振荡波谷的位置,而是使用正激引脚的峰值电压(当它超过输出电压水平时)来选通次级请求,以便初级控制器启动相应的导通周期。

次级控制器检测控制器何时进入断续导通模式,并打开与初级功率开关的最小开关电压对应的次级周期请求窗口。

当检测到DCM模式后,使能准谐振(QR)模式~20μs。在~20μs之后,禁 止进行QR开关,此时只要有次级请求发生,初级可以在任何时刻开始开 关。次级控制器具有~1µs的消隐时间,以防止在正激引脚振荡电压低于 接地电压时误检测到初级导通周期。

ZVS和QR开关窗口优化

InnoSwitch5-Pro IC允许优化开关,以实现分别接近峰值/最小正向电压 的QR/谷底开关。建议使用命令寄存器0x02 = 0x1F以获得最佳开关。 默认值为0x01。

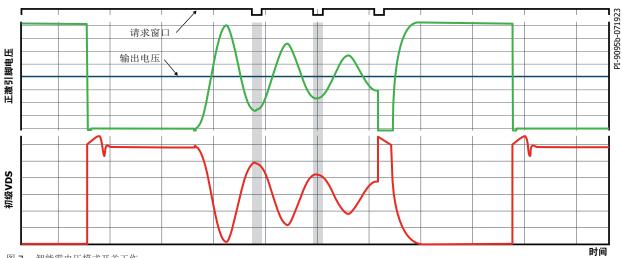


图 7. 智能零电压模式开关工作

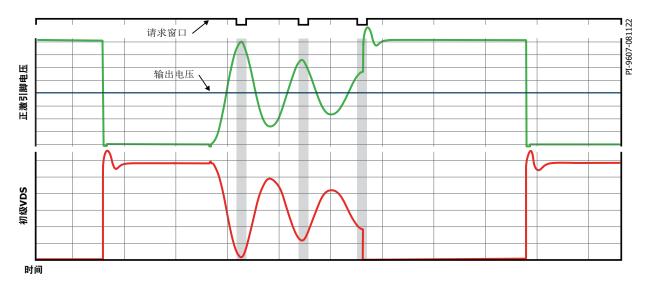


图 8. 智能准谐振模式开关工作

寄存器定义

I2C从控地址

InnoSwitch5-Pro的7位从控地址为0x18 (7'b001 1000)。

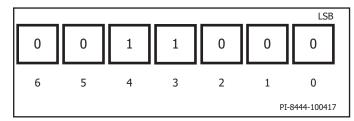


图 9. PI从控地址

I2C协议格式为3字节写命令

写命令:

写读命令I2C协议

[A]表示从ack

[a]表示主ack

[na]表示主nack

[W]表示写(1'b0)

[r]表示读(1'b1)

 $[PI_SLAVE_ADDRESS] = 0x18 (7'b001 1000)$

[PI_COMMAND](参见"PI COMMAND寄存器地址分配、说明和控制范围"——节)

[TELEMETRY_REGISTER_ADDRESS](参见"遥测(读回)寄存器地址分配和说明"一节)

每个I²C事务在命令之间至少应该有150µs的延迟。如果未提供此延迟,则可以忽略命令。InnoSwitch5-Pro不支持时钟拉伸。

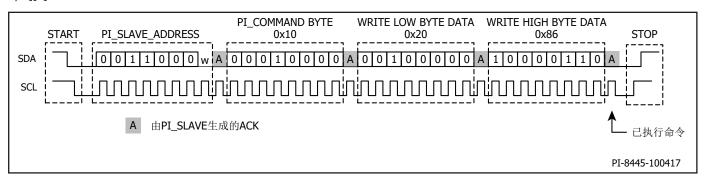


图 10. 寄存器写命令序列示例(CV设置为8V)

I2C协议格式为2字节读命令

字读事务:

[PI_SLAVE_ADDRESS][W][A][PI_COMMAND][A][START_TELEMETRY_REGISTER_ADDRESS]

[A][END_TELEMETRY_REGISTER_ADDRESS [A]

[PI_SLAVE_ADDRESS] [r][A]{PI Slave responds Low Byte}[a]{PI Slave responds High Byte}[na]

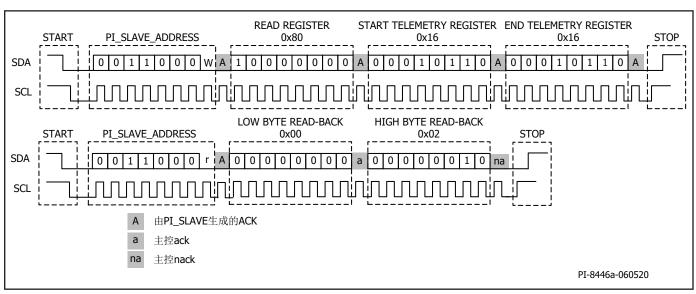


图 11. 读寄存器序列示例(读故障寄存器READ11)。注: START和END TELEMETRY寄存器地址不必指向同一寄存器即可在单个命令中读取多个寄存器。

PI COMMAND寄存器地址分配、说明和控制范围

InnoSwitch5-Pro中的所有命令寄存器地址均为奇校验寻址。部分选择寄存器(在下面突出显示的部分寄存器)还对数据的高位字节和低位字节使用奇校验错误标志位。

大阪 大阪 大阪 大阪 大阪 大阪 大阪 大阪					寄存	F器地址									
VBEN 串联母线 开关控制 使能或禁止 0x04 写_字节 0x0 位[1:0] (11) 使能VBEN/禁止VDIS (01)禁止VBEN/无复位 (00)禁止VBEN/无复位 (00)禁止VBEN/无复位 (11)* VOUT<4PCT时自动 {1}* VOUT<4PCT时自动 {1}* VOUT<4PCT时自动 {1}* VOUT<4PCT时自动 {1}* QOO!* 己禁止 {111}* 具有自动禁止特性 OTP可清除此寄存器 VDIS 负载(VBUS) 放电 使能或禁止 0x08 写_字节 0x0 (00)* 己禁止 {111}* 供施放电/禁止VB (0010) 使能放电/禁止VB 无复位 {1110}禁止放电 关断PSU 锁存关断器件 使能或禁止 0x0A 0x8A 写_字节 0x0 位[0] (0)* 己禁止 {1}* 已使能 快速 VI命令 CV/CC的 更新速度 10ms更新限制或 无速度限制 0x0C 0x8C 写_字节 0x0 位[0] {1}* 禁止10ms更新限制 {10}* 32ms {10}* 32ms {10}* 32ms {10}* 32ms {10}* 32ms {10}* 32ms	名称	功能	名称	调整范围			类型	默认	描述						
No.									位[7]	校验					
BLEEDER® 激活泄放(Vour)	VBEN		BEN	使能或禁止	禁止 (0x04 写_字节		写_字节 0x0	位[1:0]	{01}禁止VBEN/无	复位				
VDIS 负载(VBUS) 放电 使能或禁止 0x08 写_字节 0x0 位[7] 校验 VDIS 负载(VBUS) 放电 使能或禁止 0x08 写_字节 0x0 位[7] 校验 类断PSU 锁存关断器件 使能或禁止 0x0A 0x8A 写_字节 0x0 位[3:0] {0011} 使能放电/禁止VB 无复位 {1110}禁止放电 快速 CV/CC的 VI命令 10ms更新限制或 无速度限制 0x0C 0x8C 写_字节 0x0 位[0] {1}: 禁止10ms更新限制 {10}: 32ms {10}: 32ms {01}: 16ms						0x06 0x86 写			位[2]						
VDIS 负载(VBUS) 放电 使能或禁止 0x08 写_字节 0x0 位[7] 校验 位[3:0] {0011} 使能放电/禁止VB {0010} 使能放电/禁止VB 无复位 {1110}禁止放电 关断PSU 锁存关断器件 使能或禁止 0x0A 0x8A 写_字节 0x0 位[0] {0}: 已禁止 {1}: 已使能 快速 VI命令 CV/CC的 更新速度 10ms更新限制或 无速度限制 0x0C 0x8C 写_字节 0x0 位[0] {1}: 禁止10ms更新限制 位[4:3] 位[4:3] {10}: 32ms {10}: 16ms	BLEEDER ^B		EDER®	使能或禁止	禁止 0x06			0x86 写_字节	0xD0	位[1:0]		止特性的使能			
VDIS 负载(VBUS) 放电 使能或禁止 0x08 写_字节 0x0 {0011} 使能放电/禁止VB {0010} 使能放电/禁止VB {0010} 使能放电/禁止VB 无复位 {1110}禁止放电 关断PSU 锁存关断器件 使能或禁止 0x0A 0x8A 写_字节 0x0 位[0] {0}: 己禁止 {1}: 已使能 快速 CV/CC的 VI命令 10ms更新限制或 无速度限制 0x0C 0x8C 写_字节 0x0 位[0] {1}: 禁止10ms更新限制 【11}: 64ms {10}: 32ms {10}: 32ms {01}: 16ms										OTP可清除此寄存	器				
VDIS 使能或禁止 0x08 写_字节 0x0 位[3:0] {0010} 使能放电/禁止VB 无复位 {1110}禁止放电 关断PSU 锁存关断器件 使能或禁止 0x0A 0x8A 写_字节 0x0 位[0] {0}: 己禁止 {1}: 已使能 快速 VI命令 CV/CC的 更新速度 10ms更新限制或 无速度限制 0x0C 0x8C 写_字节 0x0 位[0] {1}: 禁止10ms更新限制 位[4:3] {10}: 32ms {10}: 16ms						0x08			位[7]	校验					
关断PSU 锁存关断器件 使能或禁止 0x0A 0x8A 写_字节 0x0 位[0] {0}: 已禁止 {1}: 已使能 快速 VI命令 CV/CC的 更新速度 10ms更新限制或 无速度限制 0x0C 0x8C 写_字节 0x0 位[0] {1}: 禁止10ms更新限制 位[4:3] {10}: 32ms {01}: 16ms	VDIS		'DIS	使能或禁止	禁止 (0x0	位[3:0]	{0010} 使能放电/禁 无复位					
VI命令 更新速度 无速度限制 OXOC OXOC 与_子巾 OXO 位[0] {1}: 禁止10ms更新限制 (11): 32ms {10}: 32ms (01): 16ms	关断PSU	锁存关断器件	斯PSU	使能或禁止	禁止 0x0A	0x8A	写_字节	0x0	位[0]						
位[4:3] d[4:3] 位[4:3] 位[4:3] d[4:3] d						0x8C	写_字节	0x0	位[0]	{1}: 禁止10ms更影	新限制				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							0x0E			位[4:3]	{10}: 32ms				
CVO 仅恒压 仅CV模式 0x0E 写_字节 0x04 位[2:1] {11}: 关输出 ^A {10}: 自动重启动 {01}: 锁存关断 {00}: 无响应	CVO	仅恒压	CVO	仅CV模式	莫式 (0x0E		0x0E	0x0E	0x0E 写_字节	写_字节	0x04	位[2:1]	{10}: 自动重启动 {01}: 锁存关断	
位[0] {1}: 仅CV模式/无CC调整									位[0]	{1}: 仅CV模式/无	CC调整				
位[15] 高位字节校验											范围				
恒压 输出电压 3V到30V 0x10 写_字 500 位[12:8] 输出电压 300	恒压	输出电压	亘压			0x10	写_字				{300至3000}				
(10mV/步长) 位[7] 低位字节校验 位[6:0] 输出电压				(IOIIIV)				(30)			10mV/LSB				

表 2. 命令寄存器分配

			寄	存器地址						
名称	功能	调整范围	地址	地址 (奇校验)	类型	默认	描述			
							位[15]	高位字节校验		
OVA	过压设定	3.3V到40V (100mV/ 步长)	0x12	0x92 写_字	写_字	自动 重启动 96	位[11:10]	{11}: 关输出 ^A {10}: 自动重启动 {01}: 锁存关断 {00}: 无响应	范围 {33至400}	
						(9.6V)	位[9:8]	阈值	100mV/LSB	
							位[7]	低位字节校验		
							位[6:0]	阈值		
							位[15]	高位字节校验		
							位[14]	0: 使能UVL计时器		
								1: 禁止UVL计时器		
UVA	欠压阈值	2.7V到40V (100mV/步长)	0x14	0x94	64ms 自动 軍启动 36 (3.6V)	自动 重启动 36	位[13:12]	{11}: 64ms {10}: 32ms {01}: 16ms {00}: 8ms	范围 {27至400} 100mV/LSB	
							位[11:10]	{11}: 关输出 ^A {10}: 自动重启动 {01}: 锁存关断 {00}: 无响应		
							位[9:8]	阈值		
							位[7]	低位字节校验		
							位[6:0]	阈值		
CDC	输出线压降补偿	0mV到600mV (50mV/步长)		0x16	写_字	0 (0V)	位[3:0]	范围{0至12} 50mV/LSB		
							位[15]	高位字节校验	范围	
66	恒流	CC的15%至100%,	010	000		192	位[8]		{29 (15%)	
CC	调整率	(0.17mV/ 步长/ Rs)	0x18	0x98	写_字	(100%)	位[7]	低位字节校验	至192	
							位[6:0]		(100%)}	
							位[15]	高位字节校验		
	恒定输出功率	5.3V至30V			,, ,,	300	位[8]		范围	
$V_{\rm KP}$	拐点电压	(100mV/步长)	0x1A	写_字	(30V)	位[7]	低位字节校验	{53至300} 100mV/LSB		
					位[6:0]		1001111/1200			
LS	输入电压检测	使能		0x1C	写_字节	0x00	位[0]	{1}: 输入电压检测和位为 0	触发,自动复	
CCSC	输出短路 故障检测	AR、锁存关断或 无响应		0x20	写_字节	0x02	位[1:0]	{10}: 自动重启动 {01}: 锁存关断 {00}: 无响应		

表 3. 命令寄存器分配(续上)

			寄	存器地址														
名称	功能	调整范围	地址	地址 (奇校验)	类型	默认	描述											
	关输出、AR、 锁存关断或 无响应			位[1:0]	{11}: 关输出 ⁴ {10}: 自动重启动 {01}: 锁存关断 {00}: 无响应													
ISSC	IS引脚短路故障 响应和检测频率 阈值	频率 (30kHz/60kHz/ 90kHz/120kHz)	0x22	0xA2	写_字节	0x32	位[3:2]	频率检测阈值 {00}: 60kHz {01}: 30kHz {10}: 90kHz {11}: 120kHz										
	國祖.	限流点阈值					位[6:4]	{001}: d'16 {010}: d'32 {011}: d'48 {100}: d'64 {101}: d'80 {110}: d'96 {111}: d'112										
看门狗时钟	通信速率监测	禁止/0.5s/1s/2s	0x26		写_字节	0x01 (0.5秒)	位[1:0]	{00}: 无看门狗 {01}: 0.5秒 {10}: 1秒 {11}: 2秒										
							位[8]	工作模式标记(OMF)										
		写入一个非零值 可使能中断					位[7]	串联母线开关短路										
		13 [X HE, I, EV]					位[6]	控制次级										
																	位[5]	BPS电流锁存关断
中断	中断掩码			0x2C	写读_字节	0x00	位[4]	CVO模式峰值负载计时器										
		在一个中断脉冲 发出后自动禁止											位[3]	IS引脚短路				
		中断						位[2]	输出短路									
							位[1]	VOUTUV)										
							位[0]	VOUT(OV)										
		电流检测阈值					位[5:4]	{11}: d'72 {10}: d'64 {01}: d'32 {00}: d'48										
VBUSSC	串联母线开关短 路故障	电流检测样本数	0x36	0xB6	写_字节	0x02	位[3:2]	{11}: 4个样本 {10}: 3个样本 {01}: 2个样本 {00}: 1个样本										
		AR、锁存关断或 无响应					位[1:0]	{10}: 自动重启动 {01}: 锁存关断 {00}: 无响应										
仅DCM	仅断续导通 (DCM)工作模式	使能或禁止	0x3A	0xBA	写_字节	0x00	位[2]	{0}: 禁止 {1}: 使能										

表 4. 命令寄存器分配(续上)

		寄存器地址 调整范围 类型 地址 (奇校验)	寄存器地址			mb > 1	
名称	功能		类型	默认	描述		
SRZVS 基于SR的 ZVS模式						位[11]	{1} : 使能FWD谷底开关 {0} : 禁止FWD谷底开关
		0x3E		写_字节	位[10]	{1}: 使能SRZVS模式 {0}: 禁止SRZVS模式	
						位[7:5]	SR-ZVS延迟计数 ^c
						位[4:0]	SR-ZVS导通计数 ^c

表 5. 命令寄存器分配(续上)

备注:

- A. 关输出故障响应可禁止VBEN,并在故障时复位。复位可能会触发AR,具体取决于工作条件。
- B. 通过在上电时将0x0x写入0x86来禁止弱泄放电路,以降低空载功耗。
- C. SR-ZVS导通计数和延迟计数的最小值应 >= d'3,以观测每个步骤的~85ns变化。

遥测(读回)寄存器地址分配和说明

	名称	寄存器名称	寄存器地址	类型		寄存器位分配		
					位[15]	高位字节校验		
		44 J. J. E H)+ ->-	位[12:8]			
	READ1	输出电压设置点	0x02	读_字 -	位[7]	低位字节校验	{Reg_CV}	
					位[6:0]			
					位[15]	高位字节校验		
		(A. I. I. 24) H. III. I.)	位[8]		{Reg_CC}	
	READ2	输出电流设置点	0x04	读_字 -	位[7]	低位字节校验		
ĺ					位[15]	高位字节校验		
					位[12:8]		{Reg_OVA}	
	READ3	过压阈值	0x06	读_字 -		低位字节校验	(10mV/LSB)	
					 位[15]	高位字节校验		
					位[12:8]			
	READ4	欠压阈值	0x08	读_字 -	位[7]	低位字节校验	(10mV/LSB)	
					位[6:0]			
	READ5	恒功率阈值	0x0A	读_字	位[8:0]	{Reg_VKP}		
		过压故障			位[15:14]	{Reg_OVA_Response}		
		欠压故障			位[13:12]			
		输出短路			 位[11:10]			
ı		IS引脚短路	0x0C)	 位[9:8]	{Reg_ISSC_Response}		
	READ6	欠压超时		读_字 -	 位[7:6]	{Reg_UVA_TIMER}		
		看门狗超时			位[5:4]	{Reg_WD_TIMER}		
		CV模式			位[3:2]	{Reg_CVO_Response}		
		CV模式计时器			位[1:0]	{Reg_CVO_TIMER}		
ĺ		VBUS开关使能			位[14]	{Reg_VBEN}		
		最小负载			位[13]	{Reg_BLEEDER}		
ı		关断PSU			位[12]	{Reg_PSUOFF}	1	
	READ7	快速VI命令	0x0E	读_字	位[11]	{Reg_FSTVIC}	1	
ı	KLAD/	仅恒压模式	UXUL	%_,	位[10]	{Reg_CVO}		
		过温故障滞回			位[9]	{Reg_OTP_HYS}		
		输出线压降补偿			位[3:0]	{Reg_CDC}	1	
					位[15]	高位字节校验		
	DE400	~~ \Fil4\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.40)+ +	位[8]		{Reg_	
	READ8	实测输出电流	0x10	读_字 -	位[7]	低位字节校验	MEASURED_I}	
					位[6:0]			
					位[15:12]	4'b0		
						Vout范围	报回精度	
	DEADO	克温松 1. 工 厅	0.43	(本 六		3 - 4V	20mV	
	READ9	实测输出电压	0x12	读_字		4 - 8V	40mV	
						8 - 16V	80mV	
						16 - 32V	160mV	

表 6. 遥测(读回)寄存器分配

名称	描述	寄存器地址	类型		寄存器名称
	中断使能			位[15]	{Reg_INTERRUPT_EN}
	系统就绪信号			位[14]	{Reg_CONTROL_S}
	输出放电			位[13]	{Reg_VDIS}
	输入电压检测报告就绪			位[12]	{Reg_Line_Sense}
	允许输入CV命令			位[10]	{Reg_CV_EN}
DE4D40	过温保护故障?		位[9]	{Reg_OTP}	
READ10 (瞬时)	VOUT_ADC > 1.04*VOUT	0x14	读_字	位[5]	{Reg_VOUT4PCT}
	VOUT_ADC > 1.1*VOUT			位[4]	{Reg_VOUT10PCT}
	检测到IS引脚短路			位[3]	{Reg_ISSC}
	检测到输出短路			位[2]	{Reg_CCSC}
	输出电压UV故障比较器			位[1]	{Reg_VOUT_UV}
	输出电压OV故障比较器			位[0]	{Reg_VOUT_OV}
				位[2]	CC模式
READ11	工作模式标记(OMF)	0x16	读_字	位[1]	CP模式
				位[0]	CV模式
READ12	亚柏松山市运	0x18	读_字	位[15:8]	8b'0
KEADIZ	平均输出电流		以_子	位[7:0]	READ 8的16采样平均值
READ13	平均输出电压	0x1A	读_字	位[15:12]	4b'0
KEAD13	1 均制山电压		以_寸	位[11:0]	READ 9的16采样平均值
READ14	电压DAC	0x1C	读_字	位[15:8]	DAC_100mV
KEAD14	电压DAC		以_寸	位[7:0]	DAC_10mV
	CVO模式DO		读_字	位[6]	{Reg_DO_CVO}
	IS引脚短路DO			位[4]	{Reg_DO_ISSC}
READ15	输出电压OV DO	0x1E		位[2]	{Reg_DO_VOUT_OV}
	输出电压UV DO			位[1]	{Reg_DO_VOUT_UV}
	触发看门狗			位[0]	{Reg_Watchdog}
	CVO模式AR			位[14]	{Reg_ar_CVO}
	母线开关短路AR			位[13]	{Reg_ar_VBUSSC}
	IS引脚短路AR			位[12]	{Reg_ar_ISSC}
	输出短路AR			位[11]	{Reg_ar_CCSC}
	输出电压OV AR			位[10]	{Reg_ar_VOUT_OV}
	输出电压UV AR			位[9]	{Reg_ar_VOUT_UV}
READ16	收到电源关断命令	0x20		位[7]	{Reg_Lo_CMD}
	CVO模式LO			位[6]	{Reg_Lo_CVO}
	母线开关短路LO			位[5]	{Reg_Lo_VBUSSC}
	IS引脚短路LO			位[4]	{Reg_Lo_ISSC}
	输出短路LO			位[3]	
	输出电压OV LO			位[2]	
	输出电压UV LO			位[1]	
	BPS引脚LO				

表 7. 遥测(读回)寄存器分配(续上)

名称	描述	寄存器地址	类型	寄存器名称		
					状态	
				掩码	位[8]	{Reg_OMF}
					位[7]	{Reg_VBUSSC}
				位[15]	位[6]	{Reg_~CONTROL_S}
READ17	中断	0x22	法安	位[14]	位[5]	{Reg_LO_Fault}
KEAD17	十四	UXZZ	读_字	位[13]	位[4]	{Reg_CVO_AR}
				位[12]	位[3]	{Reg_ISSC}
				位[11]	位[2]	{Reg_CCSC}
				位[10]	位[1]	{Reg_VOUT_UV}
				位[9]	位[0]	{Reg_VOUT_OV}
				位[15:12]		4b'0
READ21	输入电压检测TON报告	0x2A	0x2A 读_字		立[11:0]	16个采样累计值 ~ 初级开关导通时间
READ22	输入电压检测TOFF报告	0x2C	读_字	位[15:0]		16个采样累计值 ~ SR开关导通时间
READ23	生产线标定	0x2E	读_字		位[3]	{0}: 正偏移量 {1}: 负偏移量
			_	位[2:0]		恒流调节偏移量

表 8. 遥测(读回)寄存器分配(续上)

命令寄存器

系统就绪状态寄存器

在任何I²C事务开始之前以及InnoSwitch5-Pro因自动重启动(AR)、锁存关断(LO)、关输出(DO)或初始上电而进入复位状态之后,必须读取系统就绪位{Req_control_s}。

当{Reg_control_s}位设置为"1"时,表示InnoSwitch5-Pro已经准备好接收I²C命令。

要读取{Reg_control_s}位,需将READ10子地址0x14写入0x80地址。 然后从地址0x80读回高位字节数据。位14为{Req_control_s}。 恒流调整基于平均电流测量寄存器(READ12)。

对于5A的CC阈值,电流检测电阻为 $6.4m\Omega$ 。本例的限流步长为 ~26mA/步长。

示例: 对于最大CC为5A的电源($R_s=6.4$ m Ω),以下示例将CC设置点从5A更改为2.5A。对应于CC从100% (0xC0)变为50% (0x60)的变化 — 奇校验时变为0x80E0:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 CC寄存器(0x98)

 低位字节:
 0xE0 (8'b0100 0000)

 高位字节:
 0x80 (8'b1000 0000)

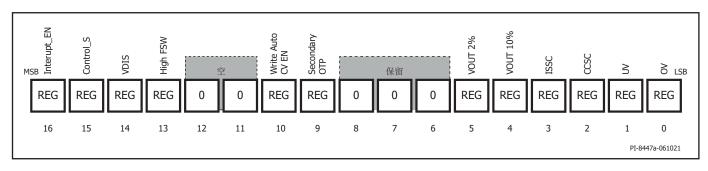


图 12. {Reg_Control_s}遥测寄存器(READ 10)。

示例: 读取{Reg_control_s}位:

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000)

读寄存器: 0x80

PI_Command: READ10 (0x14), READ10 (0x14) PI_SLAVE_

ADDRESS [r]: 0x31 (8'b0011 0001)

设定输出电压(CV)、输出恒流(CC)、恒功率模式(CP)、输出线压降补偿(CDC)和仅恒压模式(CVO)

CV寄存器(0x10)

电源的输出电压在VOUT引脚上进行调整。有效设定范围是由3V至30V,且10mV/lsb。CV寄存器的默认值为5V。低于5V且轻负载低于50mA时,以10mV/步长可能看不到输出单调性。

示例:将CV从5V更改为8V

将8V转换为lsb表示形式: 8/(10mV/lsb) = 800转换为十六进制格式 (800 = 0x0320)

添加奇校验位的十六进制数据为0x8620)

I'C的位命令如下所示:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 CV寄存器(0x10)

 低位字节:
 0x20 (8'b0010 0000)

 高位字节:
 0x86 (8'b1000 0110)

此命令序列如图10和图24所示。

CC寄存器(0x98)

恒流调整寄存器地址为0x18,奇校验后为0x98。恒流调整阈值可在满量程的15% (d'29) CC至100% (d'192)之间调节。满量程恒流阈值通过IS和GND引脚之间的检测电阻进行设置。满量程电流压降的典型值为32mV ($I_{\text{SV(TH)}}$)。精度步长为(步长为0.52%):

32mV/192 = 0.167mV/步长/Rs

恒定输出功率电压阈值VKP (0x1A)

恒定输出功率特性通过"拐点功率电压"与100%恒流调整阈值(满量程电流设置)共同设定。如果满量程CC为2.5A,并且拐点功率电压设置为8V,则恒功率为20W。如果将VKP寄存器设置为12V,则高于VKP阈值的所得恒定功率特性将为30W。

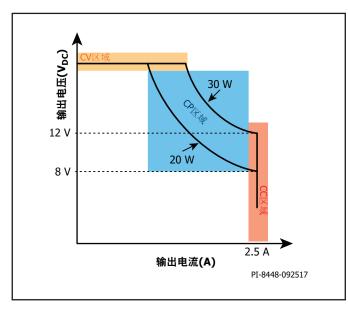


图 13. 恒定输出功率特性曲线

从空载到重载条件下,InnoSwitch5-Pro将在CV下工作,然后过渡到CP,然后进入低于VKP阈值的CC阶段。将VKP设置为最大值(30V),则无恒定输出功率调整阶段。

示例: 将VKP从30V (d'300) (奇校验后为0xF0 = 0x0170) 更改为8V(0x50 = 0x80D0):

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 VKP寄存器(0x1A)

 低位字节:
 0xD0 (8'b1101 0000)

 高位字节:
 0x80 (8'b1000 0000)

减小恒流调整阈值不会改变基于给定VKP设置点所设定的最大输出功率在上面的示例中,将CC调整设置为2A(满量程CC仍为2.5A)且VKP=8V时,在相同的20W恒功率特性下,得到的输出特性曲线如下所示,且CP特性截距为10V。

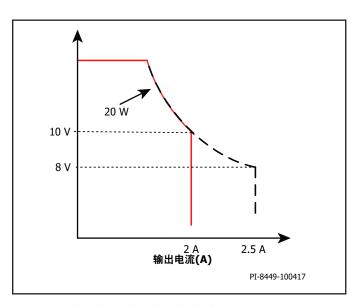


图 14. CC调整阈值降低时的恒定输出功率特性曲线

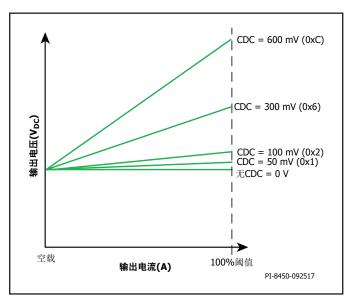


图 15. CDC与负载电流的函数关系

输出线压降补偿(CDC) (0x16)

输出线压降补偿量的可控制范围为0V至600mV,步长为50mV。CDC的施加取决于通过检测电阻(IS和GND引脚之间的电阻)的电流,该电阻用于设定恒流调整阈值。空载时没有CDC,补偿随着负载的增加而线性增加,并在100%恒流调整阈值(电流检测电阻两端的满量程电压)出现时达到最大设定值。

下表显示了用于设定所需CDC的寄存器值:

CDC (mV)	十六进制值	二进制					
0	0x00	4'b0000					
100	0x02	4'b0010					
150	0x03	4'b0011					
200	0x04	4'b0100					
250	0x05	4'b0101					
300	0x06	4'b0110					
350	0x07	4'b0111					
400	0x08	4'b1000					
450	0x09	4'b1001					
500	0x0A	4'b1010					
550	0x0B	4'b1011					
600	0x0C	4'b1100					

表 9. 输出线压降补偿

如果IS引脚与GND引脚之间的电流检测电阻短路,则不会有任何输出线 压降补偿或任何恒流调整。

示例:将CDCV从0V更改为300mV (0x06):

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b1011 0000)

 PI_Command:
 CDC寄存器(0x16)

 字节:
 0x06 (4'b0110)

仅恒压模式(0x0E)

InnoSwitch5-Pro可以设定为仅在恒压下工作,没有恒流调整模式。使能CVO模式时,设定的输出电流寄存器(0x98)会设置过载阈值,而不是调整恒流。

一旦负载电流超过设定电流,就会启动峰值负载计时器(t_{PLT})。峰值负载计时器(寄存器0x0E的CVO计时器位[4:3])的选项为8ms、16ms、32ms或64ms。如果峰值负载超过了可设定计时器,可以通过CVO寄存器0x0E的位[2:1]设定InnoSwitch5-Pro,以关输出、自动重启动、锁存关断或无响应的方式响应该故障。峰值过载的默认响应是使用8ms计时器的自动重启动。

如果发生关输出(DO)响应,InnoSwitch5-Pro将断开串联母线开关,并在故障发生时复位为默认配置。复位后,InnoSwitch5-Pro可能会报告其他故障 – 例如VOUT OV AR, 具体取决于电源的工作条件。

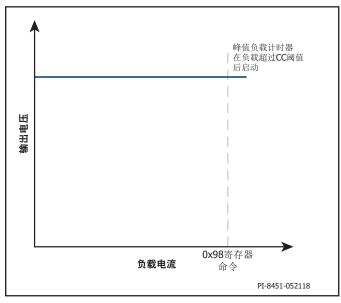


图 16. 仅恒压模式(CVO)

示例:使能CVO模式,将 t_{PLT} 设置为16ms,并对关输出(DO)作出故障响应:(0x0F):

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 CVO寄存器(0x0E)

 字节:
 0x0F (8'b0000 1111)

基于同步整流管的零电压开关(SR-ZVS)

在InnoSwitch5-Pro的准谐振(QR)工作模式下,可通过I²C命令使用次级 SRFET实现初级开关管的零电压开关。

使能SR-ZVS模式后,次级控制器检测电源何时进入断续导通模式,并按照SR-ZVS寄存器(0x3E,位[4:0] — SR-ZVS导通时间)中所设定的持续时间导通SRFET。在此期间,励磁电流以由初级反射输出电压决定的速率沿负方向充电。在SR-ZVS导通时间结束时,磁化能量将开始对初级开关上的漏极节点电容进行放电 在发送次级开关请求之前,该放电的持续时间可通过SR-ZVS寄存器(0x3E,位[7:5] — SR-ZVS延迟时间)进行设定。所设定的最小延迟应允许SR门极在发送开关请求前放电至低于门极阈值电压。如果设定的延迟时间过短,并且SR门极电压未充分放电,次级将中止开关请求,器件将自动重启动以防止任何形式的交越导通。

SR-ZVS导通时间和SR-ZVS延迟时间均可通过I²C命令以~85ns的步长进行调整,具体取决于输出电压和负载电流,以在不同工作条件下实现最高效率。有关可设定的限值,请参阅命令寄存器分配表。实测时序大约比SR-ZVS寄存器中的设定值多一到两个时钟周期。

就SR-ZVS导通时间而言,当设定值为d'3时,SRZVS导通时间的测量值约为400ns,而SR-ZVS延迟时间的测量值约为350ns。

为了提高温升性能并降低SR FET在ZVS工作期间的开关损耗,可以通过将1′b1写入SR-ZVS寄存器(0x3E,位[11] – 谷底开关),在FW电压接近其最小电压时强制开关SR FET。

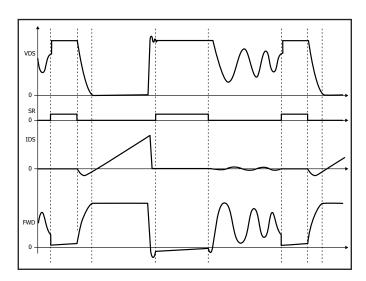


图 17. SR-ZVS工作模式的波形

示例: 使能SR-ZVS模式:

SR-ZVS导通时间 = (SRZVS ON count + 1) * 85 ns = (6+1) * 85 ns = ~600ns (bit [4:0] = d'6 or 5'b 00110)

SR-ZVS延迟时间 = (SRZVS Delay Count + 1) * 85 ns = (3+1) * 85 ns = ~350 ns (bit [7:5] = d'3 or 3'b 011)

SR-ZVS使能 = 1'b1 (bit [10])

谷底开关使能 = 1'b1 (bit [11])

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 SR-ZVS寄存器(0x3E)

 低位字节:
 0x66 (8'b0110 0110)

 高位字节:
 0x0C (8'b0000 1100)

在禁止SR-ZVS期间,还需要禁止谷底开关以使能准谐振(QR)模式。

工作模式切换时序

从准谐振(QR)工作模式切换到SR-ZVS工作模式时,或进行相反切换时,建议遵循以下时序。

准谐振模式到SR-ZVS模式的切换时序:

第1步: 使能SR-ZVS模式, 但不使能谷底开关。

示例:

SR-ZVS导通时间 = (6+1) * 85 ns = ~600ns (bit [4:0] = d'6)

SR-ZVS延迟时间 = (3+1) * 85 ns = ~350 ns (bit [7:5] = d'3)

SR-ZVS使能 = 1'b1 (bit [10])

谷底开关使能 = 1'b0 (bit [11])

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 SR-ZVS寄存器(0x3E)

 低位字节:
 0x66 (8'b0110 0110)

 高位字节:
 0x04 (8'b0000 0100)

第2步: 使能谷底开关

示例:

SR-ZVS导通时间 = (6+1) * 85 ns = ~600ns (bit [4:0] = d'6)

SR-ZVS延迟时间 = (3+1) * 85 ns = ~350 ns (bit [7:5] = d'3)

SR-ZVS使能 = 1'b1 (bit [10])

谷底开关使能 = 1'b1 (bit [11])

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 SR-ZVS寄存器(0x3E)

 低位字节:
 0x66 (8'b0110 0110)

 高位字节:
 0x0C (8'b0000 1100)

SR-ZVS模式到准谐振模式的切换时序:

第1步: 先禁止谷底开关。

示例:

SR-ZVS导通时间 = (6+1) * 85 ns = ~600ns (bit [4:0] = d'6)

SR-ZVS延迟时间 = (3+1) * 85 ns = ~350 ns (bit [7:5] = d'3)

SR-ZVS使能 = 1'b1 (bit [10])

谷底开关使能 = 1'b0 (bit [11])

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 SR-ZVS寄存器(0x3E)

 低位字节:
 0x66 (8'b0110 0110)

 高位字节:
 0x04 (8'b0000 0100)

第2步:使用下面提供的设置禁止SR-ZVS模式。

示例:

SR-ZVS导通时间 = bit [4:0] = d'0

SR-ZVS延迟时间 = bit [7:5] = d'2

SR-ZVS使能 = 1'b0 (bit [10])

谷底开关使能 = 1'b0 (bit [11])

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 SR-ZVS寄存器(0x3E)

 低位字节:
 0x40 (8'b0100 0000)

 高位字节:
 0x00 (8'b0000 0000)

当SR-ZVS导通时间为d′0时,将观测到SR门极驱动信号的最小ZVS周期。所设定的最小延迟应允许SR门极在发送开关请求前放电至低于门极阈值电压。

可设定的保护特性

输出过电压和欠压保护阈值/故障行为

除了能够在工作期间根据设定的CV设定OV/UV阈值外,一旦发生故障(a.无响应,仅设置故障寄存器; b.锁存关断(LO), c.自动重启动(AT), d.关输出(DO)), 电源的行为和UV故障检测的时间(8ms、16ms、32ms或64ms)也可以进行设定。在InnoSwitch5-Pro中,对于UV故障,有一个选项可以禁止UV计时器。在这种情况下,所选的计时器选项将被忽略,并且延迟时间与固定在~80µs的输出过压延迟相同。所有被设定为无响应的故障将被记录到遥测读回故障寄存器中。如果发生关输出(DO)响应,InnoSwitch5-Pro将断开串联母线开关,并在故障发生时复位为默认配置。复位后,InnoSwitch5-Pro可能会报告其他故障 – 例如VOUT OV AR,具体取决于电源的工作条件。

OVA(0x92): 写入此地址以指定过压阈值和对OV故障的故障响应 UVA(0x94): 写入此地址以指定欠压阈值UV计时器和对UV故障的故障 响应

示例: 更改绝对输出欠压阈值3V (d'30)、对关输出(DO)作出故障响应并将故障计时器配置为64ms: (奇校验后为0xBC9E):

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 UVA寄存器(0x94)

 低位字节:
 0x9E (8'b1001 1110)

 高位字节:
 0xBC (8'b1011 1100)

IS引脚和输出短路故障保护

InnoSwitch5-Pro可以配置为监测是输出电流检测电阻两端发生短路故障,还是IS至GND引脚之间发生短路故障。

如果流过IS引脚的检测电流未超过设定的限流点阈值(ISSC寄存器0xA2的位[6:4])并且开关频率超过设定的阈值(ISSC寄存器0xA2的位[3:2]),则会报告故障。开关频率可在30至120kHz的范围内选择。这必须仔细选择,以适应设计的预期工作条件。

可以将IS引脚短路(ISSC)的响应方式设定为: a.无响应、b.锁存关断(LO)、c.自动重启动(AR)或d.关输出(DO)。如果行为是无响应,则会记录到遥测读回故障寄存器。

ISSC (0xA2): 写入此地址以指定IS-GND短路的行为。

示例: 当开关频率超过30kHz且限流点阈值为d'48: (0x36)时,将IS引脚 短路的行为设置为AR:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 ISSC寄存器(0xA2)

 字节:
 0x36 (8'b0011 0110)

一旦IS引脚电阻上的电压超过I_{SV(TH)}的约3倍以上,InnoSwitch5-Pro就会设置CCSC故障寄存器(READ 10 bit 2)。可以将CCSC寄存器的响应方式设定为: a.无响应、b.锁存关断(LO)或c.自动重启动(AR)。在串联母线开关后的输出电容容值超过100µF的应用中,CCSC的响应应设置为无响应,以保证正确启动,在串联母线开关闭合后的正常工作期间,可将其设回其他故障响应。

CCSC (0x20): 写入此地址以指定输出短路的行为。

示例:将输出短路的行为设置为无响应:

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000)
PI_Command: CCSC寄存器(0x20)
字节: 0x00 (2'b00)

如果开关频率 $>f_{ovt}$ 参数的时间长于 t_{AR} ,将CCSC寄存器设置为无响应并在输出端创建短路条件将导致自动重启动。

串联母线开关短路故障保护

当通过IS引脚的检测电流超过设定阈值(VBUSSC寄存器0xB6的位 [5:4])且VBEN禁止时,设置串联母线开关短路故障。在报告故障之前,可以选择对超过设定阈值的电流样本数量(1、2、3或4个连续样本)进行设定。

可以将VBUS开关短路(VBUSSC)的响应方式设定为: a.无响应、b.锁存关断(LO)或c.自动重启动(AR)。如果行为是无响应,则会记录到遥测读回故障寄存器。

一旦触发VBUSSC故障,可通过次级放弃控制或发送VBEN使能命令来清除故障。写入中断掩码不会清除故障。

看门狗计时器(0x26)

看门狗计时器监督I²C命令行上的通信,并具有可调的超时时间。如果在设定的时间间隔内未收到I²C命令,InnoSwitch5-Pro将进入复位状态。在主控发出第一条I²C命令(读或写)之前,看门狗计时器不会启动。在复位状态下,将发生以下情况:

- 1. VBUS开关被禁止(串联开关断开)。
- 2. VOUT引脚电压稳定在默认的5V阈值。
- 3. 所有命令寄存器清零。

通过将0x00写入寄存器0x26,看门狗计时器被禁止。在初始软件调试或在工作台上检验器件的功能时,禁止该特性可能很有用。

示例:禁止看门狗计时器:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 看门狗计时器寄存器(0x26)

字节: 0x00 (2'b00)

断开和闭合串联VBUS开关(0x04)

使能VBEN(闭合VBUS串联开关)可加快ADC采样频率,以实现较高的控制精度。当VBEN被禁止(串联VBUS开关断开)时,向CV寄存器(0x10)和CC寄存器(0x98)写入命令的速度不能超过80ms。

向VBEN寄存器(0x04)中写入0x03(奇校验后变为0x83)可闭合串联VBUS开关,向该寄存器中写入0x00(奇校验后变为0x80)可断开开关。当VBUS开关断开(禁止VBEN)时,系统将复位为默认的5V输出电压设置点。禁止串联VBUS开关也会将所有可设定命令寄存器复位为各自的默认值。当禁止VBEN或使能VDIS寄存器时,InnoSwitch5-Pro控制器将处于复位状态。

对于这两个命令,由于控制器处于复位状态,因此不应期望命令末尾出现ACK或NACK。

InnoSwitch5-Pro还包括母线开关断开和无系统复位的选项。将0x01(奇校验0x01)写入VBEN寄存器(0x04)以断开开关,无需系统复位。在这种情况下,串联母线开关断开,开关前的输出电压保持为先前在CV寄存器中配置的值。所有可设定命令寄存器不会复位为默认值,而是保留先前设定的配置。

使能VBEN寄存器会自动禁止VDIS寄存器(0x08),如"主动VOUT引脚泄放电路和输出负载放电功能"一节所述。

示例: 使能(闭合)串联VBUS开关(0x83):

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000)
PI_Command: VBEN寄存器(0x04)
字节: 0x83 (8'b1000 0011)

在发送命令以通过系统复位(0x00)断开串联母线开关之前,建议使用命令将输出电压(CV寄存器0x10)设置为5V。在自动重启动或锁存关断的情况下,不会禁止母线开关。在关输出的情况下,母线开关被禁止,系统复位为默认配置。在将输出电压增加到16V以上之前,必须发送VBEN命令以使能串联母线开关(闭合开关)。

关断电源(0x8A)

I²C主控具有关断电源的功能(通过I²C命令),这将需要交流输入重新上电来重新启动电源。

示例:关断电源:

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000) PI_Command: 关断PSU寄存器(0x8A) 字节: 0x01 (1'b1)

快速VI命令

默认情况下,可以发送CV (0x10)和CC (0x98)命令分别设定输出电压/电流的最大速度为10ms。但是,可以通过将快速VI命令寄存器(0x8C)设置为0x1来消除速度限制。

示例: 禁止V/I命令的速度限制:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 快速VI速度寄存器(0x8C)

字节: 0x01 (1'b1)

输出负载放电功能

InnoSwitch5-Pro可以通过将VB/D引脚接地对VBUS输出电压放电。放电电路是一个串联二极管+电阻,由VBUS输出连接至VB/D引脚,如典型应用电路原理图所示。所选电阻应将VB/D引脚的电流限制在电气规格中规定的最大电流限值内。

可以通过将0x03(奇校验后为0x83)写入VDIS寄存器(0x08)来激活负载放电功能。使能VDIS寄存器将自动禁止VBEN寄存器(0x04),并将器件复位到默认状态。

I²C主控可以使用遥测来监测VOUT引脚的电压或固定的计时器,以帮助确定何时禁止该功能。

在不需要器件复位的情况下,可以通过将0x02写入VDIS寄存器(0x08)来激活负载放电功能,而无需复位。该命令将在不复位器件的情况下使能负载放电。

示例:激活Vout泄放电路:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8′b0011 0000)

 PI_Command:
 BLEEDER寄存器(0x86)

 字节:
 0x01 (8′b0000 0001)

示例:对VBUS输出放电:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 VDIS寄存器(0x08)

 字节:
 0x83 (8'b1000 0011)

采用具有自动禁止控制的主动VOUT引脚泄放功能降低I²C数据阻塞

在某些情况下,可能必须激活VOUT引脚强泄放功能,使输出电压由高稳压设置点至低稳压设置点放电。InnoSwitch5-Pro提供一个具有自动禁止特性的使能BLEEDER选项。将0x03写入BLEEDER寄存器(0x86)将使能具有自动禁止特性的泄放功能 当VOUT10PCT或VOUT4PCT寄存器清零时,将自动禁止泄放功能。该选择可通过BLEEDER命令的位[2]进行设定。一旦输出电压高于目标稳压值的10%,就会置位VOUT10PCT寄存器。一旦输出电压高于目标稳压值的4%,就会置位VOUT4PCT寄存器。在执行自动泄放控制命令之前,应使能弱泄放功能(0x86=0xDx)。在输出电压递减的过程中,建议在CV命令和使能具有自动禁止特性的强泄放功能之间有~1ms的延迟。

BLEEDER寄存器不能长时间处于使能状态,以防止控制器中的功耗过大。

当使能强泄放功能时,InnoSwitch5-Pro会自动禁止SR引脚,因为在使用泄放功能降低输出电压时不会发生开关。

动态响应

如果应用中需要更快的动态响应,InnoSwitch5-Pro中包含的命令寄存器可减少低到高输出电压转换的时间。命令寄存器地址和推荐设置如下表所示:

命令寄存器地址	默	认	推荐(加速)		
	MSB	LSB	MSB	LSB	
0x32	0x28	0x1E	0x14	0x0A	
0x34	0x18	0xC8	0x1F	0x84	

使用默认或推荐设置以外的其他值可能会导致振荡。

恒压负载

如果最终应用需要,可以为恒压(CV)型负载优化InnoSwitch5-Pro中的恒流调整模式。使能该命令寄存器可减少仅CV负载的输出电流纹波。仅当必须支持CV负载时,才应使用下面的命令寄存器和设置。

命令	令寄存器	默	认	推荐(恒	压负载)
地址	地址 (奇校验)	MSB	LSB	MSB	LSB
0x30	0xB0	0x00	0x1F	0x0A	0x20

仅DCM

InnoSwitch5-Pro具有限制由次级至初级的开关周期请求的功能,以便变换器始终在断续导通模式(DCM)下操作。

在高输入电压下,当发生阶跃负载时,通常会引入一个或多个CCM周期并提高峰值FWD引脚电压。使能仅DCM特性将限制该峰值电压,从而降低SR-FET上的应力。

可通过 I^2 C命令使能/禁止仅DCM特性。将0x04写入仅DCM寄存器(0xBA)将使能该特性。

示例:使能仅DCM模式:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 仅DCM寄存器(0xBA)

 字节:
 0x04 (8'b0000 0100)

遥测(读回)寄存器

遥测读寄存器(READ1至READ7)显示表3中所有命令寄存器的内容。遥测读寄存器地址经过分组,以允许最佳轮询,从而在单个I²C读回命令中获取电源状态,并包含对应的起始和结束遥测地址。

故障寄存器

所有的命令寄存器,包括设定电压、设定电流、恒功率拐点电压、控制 (串联VBUS开关、VOUT引脚泄放器、负载放电等)和所有故障状态, 都可以通过InnoSwitch5-Pro的遥测功能通过I²C读回。

READ10遥测寄存器是瞬时的,只要条件不再有效就会清零。

READ15 (0x1E)和READ16 (0x20)寄存器包含自动重启动、锁存关断和关输出的故障寄存器数据。仅当BPS引脚低于其欠压阈值时,才将该寄存器清零。

示例:读取故障遥测寄存器,以确定由于输出欠压(UV)故障而导致的自动重启动。

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000)

读寄存器: 0x80 遥测寄存器: 0x20

PI_SLAVE_ADDRESS [r]: 0x31 (8'b0011 0001)

PI_Slave响应: 低位字节8′b0000 0000 (0x00) 高位字节8′b0000 0010 (0x02)

工作模式标记(OMF)

InnoSwitch5-Pro在遥测寄存器READ11 (0x16)中报告工作模式。它会报告InnoSwitch5-Pro是否工作于CV、CP或CC模式下。如果使能中断掩码,则每当工作模式在CV、CP和CC模式之间发生变化时,都会引发中断。稳态工作时应读取电源的OMF状态。

主调整DAC输入

READ14遥测寄存器是控制恒压、恒流和恒定输出功率调整的主调整环路的输入。如果该寄存器与设置CV寄存器(0x10)相同,则变换器将在恒压模式下工作。如果READ14小于设置CV寄存器(0x10),则变换器在恒流(CC)或恒功率(CP)模式下工作,具体取决于恒功率拐点电压寄存器(0x1A)的值。

READ14寄存器的输出电压计算方式为:

$$V_{OUT} = 5V + (MSB \times 100mV) - (LSB \times 10mV)$$

示例: READ14 (0x1C): MSB = 0x00, LSB = 0x0E LSB为d′14,因此计算出的V_{OUT} = 5 - (14 × 10mV) = 4.86V

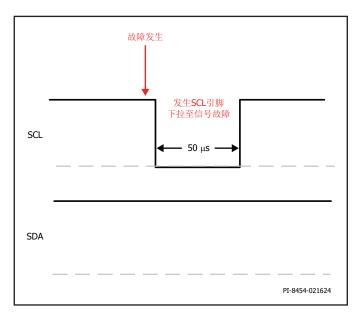


图 18. 闲置I2C期间的中断掩码

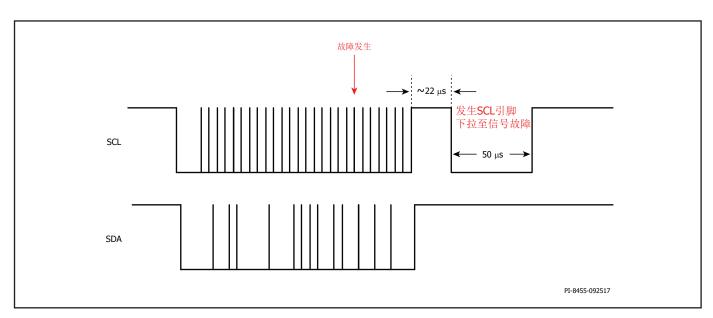


图 19. 活动I2C事务期间的中断掩码

通过SCL引脚的故障信号中断

为了改善故障报告,在I²C处于闲置状态期间(SDA和SCL引脚均被拉高时),在SCL引脚上采用了活动中断报告方案。

发生故障时, SCL引脚将表现为以下两种情况之一:

- 1. 当SCL引脚处于闲置模式时(见图15),一旦检测到故障,就会发生故障中断。Interrupt将SCL引脚下拉50µs,然后释放回HI状态。
- 当SCL引脚繁忙(活动的I²C事务)时(见图16),故障中断将等待 I²C事务完成,等待~22μs后将SCL线路拉低50μs(最小值),然后 释放回HI状态。

必须为每个单独的故障条件使能中断掩码写寄存器(0x2C)。请参阅图19,了解如何激活此特性。一旦发生故障,中断掩码将被复位,并且必须重新使能特定的相关故障以激活SCL报告方案。

当中断触发时,中断掩码读寄存器(0x22)不会自动清零,只有当中断掩码写寄存器重新使能时才会复位。控制次级中断位[6]表示次级控制器正在等待与初级控制器握手。有几种系统故障可能会触发该事件,如初级侧过温关断或输入欠压或过压情况。

注释1: 任何配置为"无响应"且使能中断掩码的故障响应都会在SCL引脚上产生中断信号。

注释2: 当报告有故障且SCL引脚上的中断信号状态不明确时,任何配置为"关输出"且使能中断掩码的故障响应都会导致系统复位。对于配置为"关输出"响应的故障,建议不要使能中断掩码。

PI-8456b-061021

图 20. 中断掩码寄存器

示例:将中断写寄存器设置为仅对输出OV、UV或短路标记SCL引脚 故障:

 PI_SLAVE_ADDRESS [W]:
 0x30 (8'b0011 0000)

 PI_Command:
 INTM寄存器(0x2C)

 字节:
 0x07 (8'b0000 0111)

输出电压测量

VOUT引脚上的电压可在遥测寄存器READ9 (0x12)上获得。该遥测寄存器的公差在3至30V的整个调整范围内为±3%。当输出电压低于5V,负载电流小于~50mA时,由于变换器的开关频率很低,电压可能会出现波动,但在规定的公差范围内。这是正常的、预期的行为。

输出电压报回为12位格式,但精度取决于输出电压范围,如表10所示。该遥测寄存器仅用于指示,在稳态工作中,根据 "CV寄存器(0x10)"一节中讨论的CV写寄存器(0x10),VOUT引脚受到非常严格的调整。

根据输出电压的不同,读回精度步长如下表所示。

输出电压	精度步长	
3	4	20mV
4	8	40mV
8	16	80mV
16	32	160mV

表 10. 输出电压报回精度

示例:如果READ 9读回寄存器的值是0xA801(因为低位字节在高位字节之前),则正确的十六进制到十进制的转换应是0x01A8 = 424(十进制)。

报回的全部输出电压范围应乘以10mV,换算成实际输出电压,本例中的输出电压为4.24V。

输出电压设置点READ1 (0x02)的读回与所有读寄存器一样,格式为低位字节在高位字节之前。

输出电流测量

负载输出电流也可在遥测寄存器中获得。

遥测寄存器READ8 (0x10)包含瞬时实测的相对输出负载电流数据。相对于由InnoSwitch5-Pro的IS和GND引脚之间连接的检测电阻所设定的满量程恒流调整阈值,是可以获得负载电流的。

电流检测电阻达到100%阈值时,ADC全量程为192。

示例:如果使用10mΩ检测电阻,且读回寄存器为0x8040。

从高位字节中去掉奇校验位,结果是十进制的0x40=64。

检测电流值 = N(+进制) 0.167/ R_{SENSE} 64 x 0.167/10 = 1.068A。这是实测输出电流值:

(0.167mV = 32mV/192,其中32mV = $I_{SV(TH)}$,192是ADC满量程)。

READ12和READ13分别是实测输出电流和输出电压的16个采样滚动平均值。这些平均寄存器的值比瞬时寄存器(READ8和READ9)更稳定,但需要更长的时间才能稳定下来。

当串行母线开关断开时,这些寄存器将被清除,并且值将复位为零,直到开始累积测量值为止。READ12和READ13的精度分别与READ8和READ9相同。

输出电压和电流测量寄存器每100µs更新一次。

输入电压测量

InnoSwitch5-Pro会报告初级开关导通时间和次级开关(同步整流管)导通时间,这些时间可用于伏秒平衡方程,以估算输入电压。初级开关导通时间(称为TON)在READ21 (0x2A)中报告,次级开关(SR)导通时间(称为TOFF)在READ22 (0x2C)中报告。

仅当通过将0x01写入命令寄存器0x1C来发送Line Sense Enable命令时,才会更新遥测数据。命令发送后,InnoSwitch5-Pro将以16个采样累积值更新TON和TOFF遥测数据,并在READ10寄存器位[12]中置位"输入电压检测报告就绪"标记。要提取平均TON和TOFF值,应将这些值除以16。为了优化功耗,仅当发送Line Sense Enable命令时,才会更新TON和TOFF的遥测数据。

示例:读TON和TOFF遥测数据:

Line Sense Enable命令

 PI_SLAVE_ADDRESS [W]:
 0x30 (8′b0011 0000)

 PI_Command:
 输入电压检测寄存器(0x1C)

 字节:
 0x01 (8′b0000 0001)

输入电压检测报告就绪标记

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000)

读寄存器:0x80遥测寄存器:0x14

PI_SLAVE_ADDRESS [r]: 0x31 (8'b0011 0001)

PI_Slave响应: 低位字节8′b0000 0000 (0x00) 高位字节8′b0101 0000 (0x50)

读TON和TOFF遥测寄存器

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000)

读寄存器: 0x80 遥测寄存器: 0x2A

PI_SLAVE_ADDRESS [r]: 0x31 (8'b0011 0001)

PI_Slave响应: 低位字节8′b0010 1110 (0x2E) 高位字节8′b0000 0110 (0x06)

PI_SLAVE_ADDRESS [W]: 0x30 (8'b0011 0000)

读寄存器: 0x80 遥测寄存器: 0x2C

PI_SLAVE_ADDRESS [r]: 0x31 (8'b0011 0001)

PI_Slave响应: 低位字节8′b1111 0010 (0xF2) 高位字节8′b0000 0011 (0x03)

转换TON和TOFF以估算输入电压的公式:

$$VIN = \frac{N_P}{N_S} \times (VOUT + V_{DS(SR)}) \times \frac{TOFF}{TON}$$

示例:在100V输入和30V输出时,使用遥测报告的TON、TOFF和平均VOUT来估算输入电压

方法1: 直接使用16个采样累积值(更准确)

 $N_p = 25 \text{ T}; N_s = 5 \text{ T}$

平均VOUT, READ13 (0x1A) = h'0x0B9C或d'2972 (29.72V) 16个采样累计TON计数,READ21 = h'0x062E或d'1582 16个采样累计TOFF计数,READ22 = h'0x03F2或d'1010

$$VIN = \frac{25}{5} \times 30 \text{ V} \times \frac{1010}{1518} = 99.8 \text{ V}$$

注: 对于TON计数遥测值,需要减去 $4\times16 = d'64$ 来计算系统中的延迟

方法2: 通过将报告的计数值转换为时间。

将十六进制格式转换为十进制格式:

READ21: 0x062E(十六进制)转换为d'1582(十进制)

 $TON_{AVG} = 1582/16 * 85 \text{ ns} = 8.4 \mu\text{S}$

READ22: 0x03F2 (十六进制) 转换为d'1010 (十进制)

 $TOFF_{AVG} = 1010/16 * 85 \text{ ns} = 5.36 \mu S$

注: TON_{AVG} 包括 $250\sim350ns$ 的额外延迟,需要减去该延迟才能计算系统中的延迟。

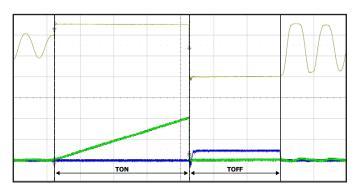


图 21. TON时间和TOFF时间的测量

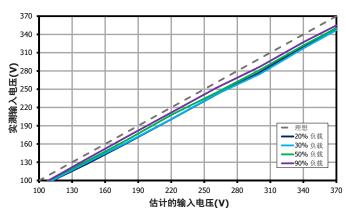


图 22. 输入电压测量精度

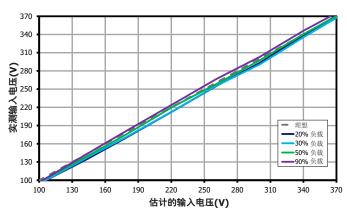


图 23. 输入电压定中测量精度

输入电压检测功能的精度需要具有完整SR传导周期的规则开关模式。这还取决于伏秒平衡方程的建模精度。在轻载下,由于开关模式不规则且开/关时间接近最小导通时间,输入电压检测功能的精度将受到影响。如果禁止SR,则无法使用该功能。

如果SR导通时间较短,那么在计算中直接使用TOFF遥测数据而不对短 SR导通进行补偿,就会影响精度。在这种情况下,建议在估算输入电压 之前,先确定不同工作条件下的设计特性,并将额外时间计入TOFF参数。利用固件中的校正因数使曲线以理想线为中心,可以进一步提高 精度。

对于SRZVS工作模式,在执行Line Sense Enable命令之前,需要优化 SRZVS工作,即需要设置SRZVS导通时间和SRZVS延迟时间以获得最佳 ZVS。如果SRZVS导通时间和延迟时间过长,则会导致下面用于估算输入电压的伏秒平衡方程出现明显误差。在报告的TOFF参数中,在计算输入电压之前添加SRZVS导通时间。

示例:在200V输入和30V输出时,使用遥测报告的TON、TOFF和平均 VOUT来估算输入电压

方法1: 直接使用16个采样累积值(更准确)

 $N_p = 25 \text{ T}; N_s = 5 \text{ T}$

平均VOUT,READ13 (0x1A) = h'0x0B9A或d'2970 (29.70V) SRZVS导通 = 4 * 85ns = ~350ns

16个采样累计TON计数, READ21 = h'0x03A3或d'931

16个采样累计TOFF计数, READ22 = h'0x0465或d'1125

$$VIN = \frac{N_P}{N_S} \times (VOUT + V_{DS(SR)}) \times \frac{(TOFF + SRZVS_{ONTIME})}{TON}$$

$$VIN = \frac{25}{5} \times 30 \text{ V} \times \frac{1125 + 4 \times 16}{867} = 205.7 \text{ V}$$

注:对于TON计数遥测值,减去4*16 = d′64来计算系统中的延迟。 方法2经上述修改后适用于SRZVS工作模式。

生产线标定

为了提高输出电流容差性能,InnoSwitch5-Pro提供了生产线标定功能,可以独立消除应用中每个器件的器件偏移变化。InnoSwitch5-Pro在READ23寄存器中提供测试期间测量到的偏移量遥测数据。该偏移量可与发送至CC寄存器(0x18)的代码相加或相减,以设置恒流调节阈值。

示例: 假如READ23遥测数据为0x0004, 最低有效4位是4′b0100。

生产线标定遥测素数据 = 4'b0100 (二进制) 或d'4 (十进制)

恒流调节偏移量位[2:0] = 3'b100或d'4(十进制)

偏移量符号位[3] = 1'b0,表示正

CC调节代码(0x18)

= 具有零偏移量的CC代码 +生产线标定

如果2A的CC调节代码为d'64(使用生产线标定偏移量 = 0的器件进行标定),则该元件的CC调节代码为d'64 + d'4 = d'68,以具有与偏移量为'0'的元件相同的CC性能,元件间差异造成的公差完全消除。

处理程序将是在应用设计中使用零偏移器件来标定和导出CC调节代码,然后使用生产线标定遥测数据加上或减去器件偏移量。如果符号位为正,则将偏移量加到CC调节代码中。如果符号位为负,则从CC调节代码中减去偏移量。

I²C连接

uVCC外部电源

uVCC引脚为外部控制器提供精确调整的3.6V电源。当VOUT引脚大于或等于5V时,此电源的最大负载电流能力为40mA,持续0.5秒。在稳态工作下,预期从uVCC汲取的电流小于10mA。 μ VCC引脚应至少用一个2.2 μ F的陶瓷电容与GND引脚去耦。当VOUT引脚电压小于3.9V时,内部LDO将下降并跟随VOUT引脚电压。在这些条件下, μ VCC引脚电压取决于负载电流和内部串联阻抗。当VOUT引脚 = μ VCC引触电压取决6mA时, μ VCC上的预期输出为 μ VCCL的预期输出为 μ VCCL的预期输出为3V = μ VCCL的预期输出

如果VOUT引脚电压下降到足以导致uVCC引脚低于 $uVCC_{RST}$ 阈值,则通过 I^2C 的通信不再可用。

SCL/SDA上拉要求

SCL和SDA引脚应通过电阻上拉至uVCC引脚。最大上拉电阻值取决于SCL/SDA引脚的电容容值和I²C主控。假设总电容容值为20pF,到 V_n 阈值的电压下降时间与SCL时钟频率的函数如下表所示。

InnoSwitch5-Pro元件可用于高于535kHz的I²C频率,但是需要满足数据手册参数表以及表下方的相关注释所规定的特定时序要求。在频率高于535kHz时满足这些要求,可能需要接口IC能够产生非对称的I²C CLK信号。如果接口IC不具备这种能力(或者通过I²C母线连接到InnoSwitch5-Pro的微控制器),推荐使用535kHz或更低的I²C频率。

最大频率(kHz)	最大上拉电阻($\mathbf{k}\Omega$)	t _F (ns)
400	13	300
500	10	240
600	8	200
700	7	178

表 11. I2C上拉电阻值

I²C示例波形

将输出电压设置为8V

与图10所示的示例相同。

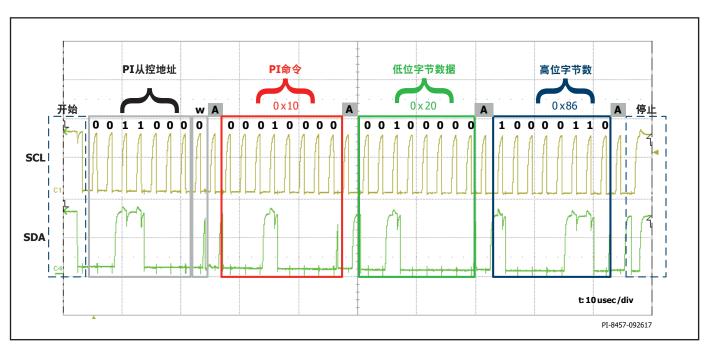


图 24. 将输出电压设置为8V的I2C波形

欠压引起AR事件后读取遥测故障寄存器

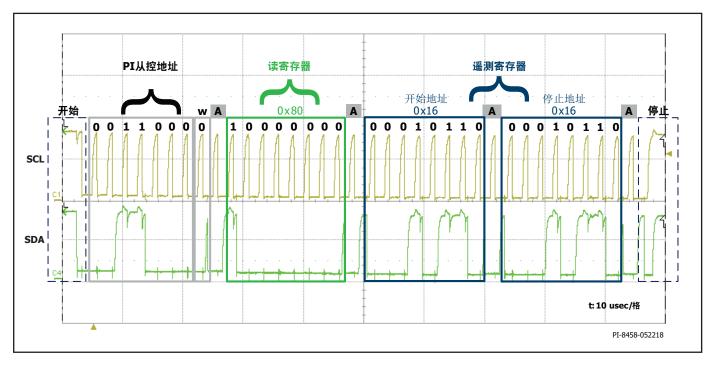


图 25. 在读寄存器(READ0)中写入故障寄存器READ11的地址以便读回READ11之I²C波形

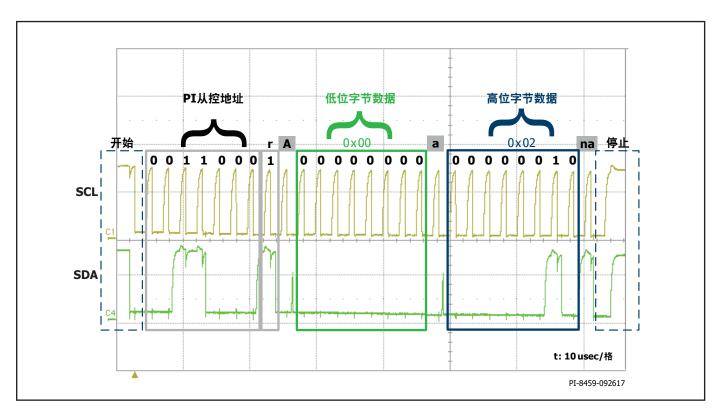
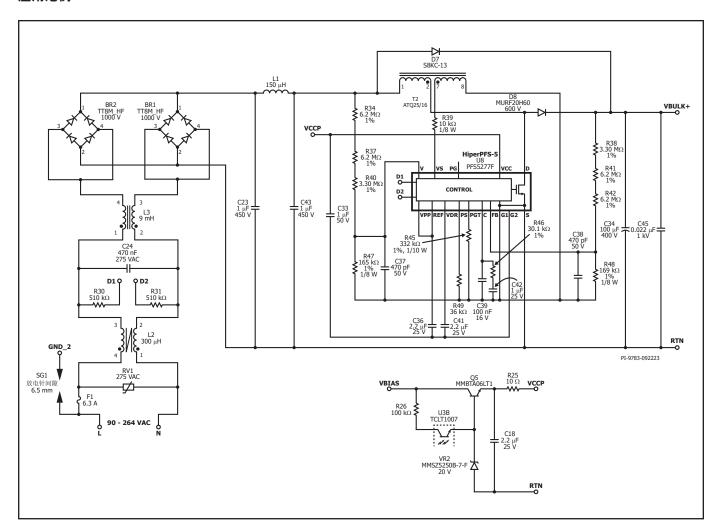
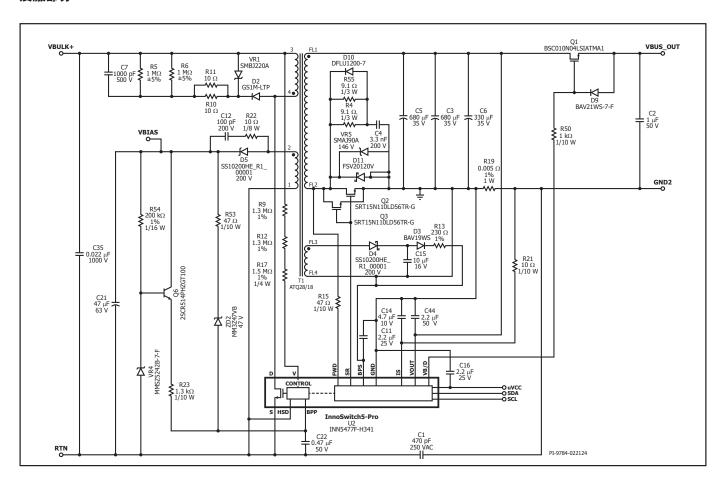




图 26. 从READ11寄存器读取值的I2C波形

应用范例

反激部分

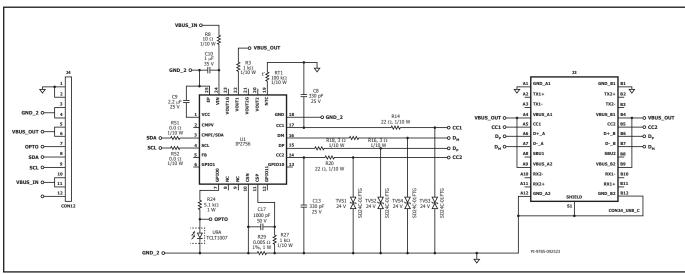


图 27. 使用INN5477F InnoSwitch5-Pro的140W USB PD电源的电路原理图

图27所示电路为一款USB PD 3.1扩展功率范围(EPR)电源,它采用了InnoSwitch5-Pro INN5477F反激式开关IC, 其中PFC级使用PFS5277F IC 和英集芯IP2756作为USB PD控制器。它的额定功率为140W,峰值功率为280W。支持的USB PD输出性能包括5V/5A、9V/5A、15V/5A、20V/5A、28V/5A和15V - 28V/5A EPR AVS。峰值功率能力为28V/10A,持续1ms,占空比为5%。该USB PD电源符合DOE 6级和EU CoC v5标准。

输入保险丝F1可隔离电路并提供元件故障保护。共模扼流圈L2、L3与Y电容C1一起提供共模噪声滤波,而X电容C24、差模扼流圈L1与电容C23、C43一起提供差模EMI滤波。MOV RV1用于雷击保护。桥式整流管BR1及BR2对AC输入电压进行整流,并提供全波整流DC。

变压器初级的一端连接到整流DC母线;另一端连接到InnoSwitch5-Pro IC的漏极端子。电阻R9、R12和R17为欠压和过压(UV/OV)保护功能提供输入电压检测。二极管D2、电容C7与电阻R10、R11、R5、R6组成初级RCD钳位,可在初级开关管关断的一瞬间立即对INN5477F IC (U2)的峰值漏极电压进行钳位控制。存储在变压器漏感中的能量将转移到电容C7,然后主要在R5和R6上耗散。电阻R10和R11用于在U2关断时以及二极管D2反向恢复期间减少U2漏极电压上的振荡。由于具有衰减作用,R10和R11有助于改善EMI性能。TVS二极管VR1用于在发生ESD或EFT等异常动态事件时限制U2的漏极峰值电压。高压陶瓷电容C35用于总线高频去耦,当放置在靠近连接到大电容正极和InnoSwitch5-Pro IC的源极引脚的变压器引脚时,有助于减小高频开关电流的环路面积。

InnoSwitch5-Pro IC采用SR零电压开关(SR-ZVS)或准谐振(QR)反激式控制方案,这两种方法都使用可变频率和可变初级电流限流点来调节次级侧的功率输出。电源可在连续导通模式(CCM)、断续导通模式(DCM)和临界导通模式(CRM)下工作,实现状态之间的平滑切换。由次级来同时控制同步整流的门极驱动和初级侧功率开关管的瞬间导通可避免两个开关管发生交越导通的可能性,确保极其可靠的工作性能。

在QR工作模式下,SR FET在一个开关周期内只导通一次,即在CCM和DCM周期的次级导通时间内。对于CCM脉冲,SR门极驱动在次级侧通过FluxLink向初级侧发出新的开关周期命令之前关断;而对于DCM脉冲,当SR FET两端的电压降幅度低于本数据手册中定义的V_{SR(TH)}时,SR门极驱动就会关断。

使能SR-ZVS工作模式后,对于CCM脉冲,SR FET在次级导通时间开始时导通,并在次级控制器向初级发出新的开关周期命令之前关断。因此,QR和SR-ZVS模式的CCM开关周期看起来完全一样。在DCM模式下,除了在次级导通时间开始和结束时通常发生的SR FET导通和关断外,SR FET在次级控制器请求下一个初级开关导通之前,还会在开关周期内发生第二次导通和关断(称为SR-ZVS脉冲)。

用户可通过I²C命令对SR-ZVS脉冲导通时间进行设定。由于通过SR FET 的电流在此时间间隔内从漏极流向源极,因此输出的部分能量会储存在 励磁电感中。SR-ZVS脉冲导通时间结束后,SR FET关断,次级控制器等待由SR-ZVS延迟时间定义的持续时间(用户可设定),然后发送下一

个初级开关导通请求。在此SR-ZVS延迟时间内,初级励磁电感与开关节点电容发生谐振,从而有利于随后的周期中初级开关的ZVS导通。通过适当调整SR,可实现完全ZVS。在SR-ZVS模式下,需要TVS钳位来限制异常工作条件下初级器件的BV_{pcs}。

不同的输入和输出电压情况可能需要不同的SR-ZVS导通和延迟时间,以实现初级开关的ZVS导通,从而达到最高效率。SR-ZVS导通时间值过大可能会导致初级开关中出现过大的负电流,从而导致效率下降。同样,延迟时间过长可能导致初级开关电压从其谷值再次谐振回来,从而阻止初级开关的ZVS导通。建议将SR-ZVS延迟时间调整为接近励磁电感和开关节点电容之间谐振振荡时间周期的一半,以实现最佳导通。为了降低SR FET的导通损耗,建议在使能SR-ZVS模式时使能FWD谷底开关。使能QR模式后,最好在FWD电压处于峰值(初级漏极电压处于谷值)时导通初级开关,以减少导通损耗。

默认情况下,InnoSwitch5-Pro采用QR工作模式。SR-ZVS可通过I²C命令使能或禁止。禁止SR-ZVS功能后,初级控制器将自动恢复到QR工作模式。需要注意的是,使能SR-ZVS功能后,次级控制器将仅针对DCM周期执行SR-ZVS脉冲。在CCM工作模式下,不会产生SR-ZVS脉冲,因此开关周期看起来与QR模式完全相同。

InnoSwitch5-Pro IC具有自启动功能,当首次输入上电时,它使用内部高压电流源对BPP引脚电容(C22)进行充电。在正常工作期间,初级侧控制器从变压器T1的辅助绕组获得供电。辅助(或偏置)绕组的输出端由二极管D5进行整流,并由电容C21进行滤波。线性稳压电路由BJT Q6、R54、R23和齐纳稳压管VR4组成。该电路确保向InnoSwitch5-Pro IC的BPP引脚供应足够的电流。通过向BPP引脚注入足够的电流,U2的内部电流源不需要为C22充电,从而降低空载功耗,提高正常工作时的效率。BPP引脚的电流消耗随着开关频率的增加而增加。如果在VR4上串联一个电阻,则BJT Q6的发射极电压会随着负载的增加而出现正斜率,从而确保BPP引脚的电流随着负载的增加而增加。这样可以提高整体效率。HSD引脚必须连接到源极引脚。

齐纳稳压管ZD2提供初级检测输出过压保护。在反激式变换器中,辅助绕组的输出端可跟踪变换器的输出电压。如果变换器的输出端出现过压,辅助绕组电压会升高并引起ZD2击穿。如果注入InnoSwitch5-Pro IC的BPP的电流超过 $I_{\rm SD}$ 阈值,InnoSwitch5-Pro控制器将锁断电源并防止输出电压进一步升高。触发输出过压保护时,电阻R53限制注入BPP引脚的电流。

输出稳压通过采用调制控制来实现,I_{LIM}开关周期的频率和数量根据输出负载进行调整。在较高负载下,次级控制器更频繁地请求开关周期,从而导致更高的I_{LIM},而在较轻负载或空载下,开关频率降低,从而导致更低的I_{LIM}值。在一个开关周期中,初级开关将保持开通,直到初级电流逐渐增大到该特定工作状态的器件限流点。InnoSwitch5-Pro IC的次级侧具有输出电压和电流检测功能,并为FET提供门极驱动,以实现同步整流。变压器次级绕组两端的电压由次级侧同步整流场效应晶体管(SRFET) Q2和Q3整流,并由电容C3、C5和C6滤波。添加C6 (330μF)利于支

持280W的峰值功率。对于额定功率为140W的电源,C3和C5(各680μF)通常就足够了。开关期间产生的高频振荡通过RCD缓冲器(电阻R4、R55、电容C4和二极管D10)衰减,否则高频振荡会产生辐射EMI问题。当电容C4放电时,二极管D10可最大限度地降低电阻R4和R55上的耗散。该RCD缓冲器还有助于降低SR FET上的电压应力。添加TVS二极管VR5来限制Q2和Q3的峰值漏极电压,以实现峰值功率工作。

Q2和Q3的门极由U2内部次级侧控制器中的电路驱动。SR FET Q2和Q3根据IC的FWD引脚通过电阻R15检测到的次级绕组电压进行导通。

U2的次级侧从次级绕组正向电压或输出电压自行供电。对于使用InnoSwitch5-Pro的设计,尤其是28V输出情况,强烈推荐使用次级偏置绕组电路,以确保较高的系统效率,并将次级侧结温保持在可接受的范围内。在该设计中,次级偏置绕组电压由二极管D4整流,并由电容C15滤波。电阻R13限制流入BPS引脚的电流。对于具有较高输出电压(>24V)的设计,建议为R13选择一个值,使次级偏置绕组在最大输出电压的满载条件下向BPS引脚提供~7mA的电流。连接至InnoSwitch5-Pro IC的BPS引脚的电容C11可提供内部电路去耦。

IC U2通过检测电阻R19两端的电压降来监控输出电流。然后测量结果通过电阻R21和电容C14进行滤波,并通过IS和次级接地引脚进行监控。通过I²C接口配置的内部电流检测阈值最高可达到32mV,用以减少损耗。一旦超过输出电流阈值,InnoSwitch5-Pro将根据其配置作出响应,通过使用可变频率和可变初级开关峰值电流控制方案来维持固定输出电流,或者关断电源。

在恒流(CC)工作期间,当输出电压低于5V时,InnoSwitch5-Pro IC内的次级侧控制器将从次级绕组中供电。在初级侧功率开关导通期间,出现于次级绕组的正向电压通过内部稳压器对次级旁路引脚去耦电容C11充电。这样就能将输出电流调节维持在UV阈值的最小值。在此水平之下时,电源会进入自动重启动模式,直到输出负载降低。

当输出电流低于CC阈值时,变换器将以恒压(CV)模式工作。输出电压由 InnoSwitch5-Pro IC的VOUT引脚监控。实测输出电压会与通过 InnoSwitch5-Pro IC的集成次级控制器和USB-PD控制器IC设置的内部电压阈值进行比较。通过可变频率和可变初级开关峰值限流控制方案实现输出电压调整。电容C44用作去耦电容,建议放置在靠近VOUT引脚的位置。

N沟道MOSFET Q1用作母线开关,可将反激式变换器的输出与USB Type-C接口连接或断开。MOSFET Q1由InnoSwitch5-Pro IC上的VB/D引脚控制。二极管D9连接在Q1的源极端子和门极端子之间,电阻R50由Q1的门极端子连接至VB/D引脚。这2个元件在Q1关断时为母线电压提供放电通路。输出端使用电容C2,起到ESD保护和降低输出电压纹波的作用。

在该设计中,英集芯IP2756 (U1)用作USB Type-C和PD控制器。InnoSwitch5-Pro IC的输出直接通过反激输出电压VBUS_IN为IP2756器件供电。USB PD协议通过CC1或CC2线路进行通讯,具体取决于Type-C插头的方位。

IP2756 IC通过IPC接口使用SCL和SDA线路与InnoSwitch5-Pro IC通信,通过这些线路配置电源工作参数,如设置点(输出电压CV、恒流CC、输出线压降补偿CDC)、保护阈值和响应(输出过压OVA/欠压UVA),并收集遥测状态(输出电压和输出电流)。可用PI命令和遥测寄存器的完整列表可在本数据手册中找到。电容C16用作uVCC引脚的去耦电容。U1通过检测电阻R29上的电压降来监控输出电流,并由电阻R27和电容C17进行滤波。

电容C9和C10用作U1的VCC和VIN引脚上的去耦电容。电阻R14、R16、R18和R20以及TVS二极管TVS1-TVS4用于保护CC1、CC2、DP和DM线路免受ESD浪涌的影响。电容C8和C13用于保护CC1和CC2。

设计要点

输出功率对照表

输出功率表(表1)列出了在以下条件下能获得的最大实际持续输出功率:

- 1. 85VAC输入时,90V以上的最小DC输入电压,当230VAC输入(或 115VAC输入并使用倍压整流)时,220V或以上的最小DC电压。对 于AC输入的设计,所选的输入电容额定电压应能满足这些电压 要求。
- 2. 效率的假定取决于功率水平。最小型号器件功率水平是假定效率 >88%的情况下,最大器件的效率假定>93%。
- 3. 变压器初级电感公差为±5%。
- 4. 所选择的反射输出电压(VOR)可使通用输入电压设计在最小输入电压下的 $K_p \ge 0.7$,高输入电压设计的 $K_p \ge 1$ (大号器件在热受限环境下的效率应>94%)。建议 $K_p \ge 1.2$,以便在给定工作条件下充分发挥SR-ZVS的优势。
- 5. 适配器和敞开式设计的最大传导损耗分别限制在0.6W和0.8W。
- 6. 峰值及开放式应用的输出功率是通过选择升高的电流限流点实现的,对于适配器应用中所列出的输出功率是采用标准的电流限流点得到的。
- 7. 将器件贴装在电路板上,源极焊接在足够的铺铜区域上,并且/或者使用一个散热片将源极引脚温度控制在110℃或之下。
- 8. 敞开式设计的环境温度为50℃,密闭式适配器应用的环境温度为40℃。
- 9. 当K_p值小于1时,KP是初级电流脉动部分与峰值部分的比率。为防止由于开关周期的提前误关断所导致的输出功率能力下降的情况出现,建议K_p值要满足≥0.25。这样将避免在开关开通时初始电流尖峰(I_{INT})触发到器件限流点。

初级侧检测输出过压保护

InnoSwitch5-Pro IC内部的保护电路可以实现初级侧检测输出过压保护,当流入初级旁路引脚的电流超过阈值电流 \mathbf{I}_{5D} 时触发该保护。在这种情况下,保护响应取决于器件的特性代码,即锁存关断或自动重启动。除了用作内部滤波器之外,初级旁路滤波电容器还提供抗噪功能。为使旁路电容达到有效的高频滤波,应将电容尽量放置在距器件初级旁路和源极引脚最近的地方。

初级检测OVP功能的实现方式是,将串联起来的稳压管和电阻由经整流和滤波的偏置绕组电压端连接至初级旁路引脚。整流滤波后的偏置绕组电压与绕组电压之比可能高于或低于预期值(在圈数比的0.7倍至1.5倍之间)。初级偏置绕组与次级绕组耦合不良会导致值低于预期值,而初级偏置绕组电容的峰值充电会导致电压高于预期值。整流滤波后的偏置绕组电压由两个因素的相互作用决定。因此,建议在选取初级偏置元件值之前测量整流偏置绕组电压。此测量最好在最低输入电压下和输出端负载最高时进行。此测量电压用于帮助选择实现初级检测过压保护所需的元件。对于OVP电路中的电阻(R53),推荐使用:1) 47Ω 的OVP电阻和齐纳稳压管串联,或2) $\geq 47\Omega$ 的OVP电阻、齐纳稳压管和通用阻断二极管串联,以使电流在OVP事件期间进入BPP,但防止BPP电容通过OVP电路放电。

选择齐纳稳压管和电阻的数值时,必须确保BPP在目标OVP电平下吸收的电流超过BPP引脚故障关断阈值电流 I_{so} 的最小限值。齐纳稳压管在正常稳态和动态工作条件下不得导通。因此在这些条件下OVP电路的钳位电压必须高于偏置电容电压和BPP电压之差。建议在OVP电路中使用额定功率为500mW的齐纳稳压管。

降低空载功耗

InnoSwitch-5-Pro IC可以在自供电模式中启动,这会从旁路引脚电容(通过内部电流源充电)吸收能量。为了降低空载功耗并提高其他条件下的整体效率,建议在InnoSwitch-5 Pro IC开始开关后,使用初级偏置绕组为初级旁路引脚提供电源电流。变压器上的辅助(偏置)绕组可起到这种作用。使用偏置绕组向初级旁路引脚供电后,可实现空载功耗低于30mW的电源。对图27所示的电阻R23进行调整,即可实现最低空载输入功率。建议在选择R23值之前,先测量最大输入电压、5V空载条件下的整流偏置绕组电压。

次级侧过压保护

次级侧检测输出过压保护由InnoSwitch5-Pro IC提供。用户可通过 I^2C 命令对过压阈值的幅值和响应类型进行设定。

元件的选择

InnoSwitch5-Pro初级侧电路的元件

BPP电容

连接InnoSwitch5-Pro IC初级旁路引脚和GND引脚的电容可以为初级侧控制器提供去耦,它的值也决定了电流限流点。标准和升高的ILIM可以分别使用0.47µF或4.7µF电容。尽管可以使用电解电容,但在双面板上最好使用表面贴装的多层陶瓷电容,因为它能使电容靠近IC放置并且具有较低的ESL。它们的小尺寸也非常适合紧凑型电源的应用。推荐使用额定值至少为10V(0805)或更大型号的X5R或X7R介质电容,以确保满

足最小电容容量要求。陶瓷电容的型号名称(例如,来自不同制造商或不同产品系列的X7R、X5R)没有相同的电压系数。建议查看相应的电容数据手册,确保所选电容在5V下的电容电压降不会超过20%。请勿使用Y5U或Z5U/0603多层陶瓷电容(MLCC),因为这些类型的贴片陶瓷电容的电压和温度系数特性非常差。

偏置绕组和外部偏置电路

初级开关的漏极引脚与InnoSwitch5-Pro初级侧控制器的初级旁路引脚之间的内部稳压电流源对连接初级旁路引脚的电容充电,以实现启动。变压器中的偏置绕组外加整流管和滤波电容,构成一个偏置供电电源,用于为BPP供应所要求的电流。应选取合适的偏置绕组圈数,以便在最高输入电压和5V空载输出条件下在电容上能够产生最小7V至8V的电压。如果偏置绕组两端的电压低于该值,偏置电路可能无法向BPP注入足够的电流,导致内部电流源导通,从而增加空载功耗。

对于具有单个输出电压的设计,使用一个电阻稳压电路可能就足够了。然而,在USB PD应用中,输出电压范围可能非常宽,例如EPR设计中的 5V至28V。如此宽的输出电压变化会导致初级偏置绕组电压出现明显的变化。因此,在宽输出范围设计中,通常需要一个线性稳压电路来调节注入InnoSwitch5-Pro IC初级旁路引脚的电流。

5V空载条件下外部电路的初级偏置电流应设置为 I_{s1} 的最大值,以使 InnoSwitch5-Pro IC实现最低功耗。BPP电压大小可作为注入的BPP电流 是否足够的指标。当BPP电压达到 V_{SHUNT} (典型值5.36V)时,表示有足够的外部电流供应到BPP。否则,初级控制器将使用内部稳压电流源消耗来自漏极引脚的功率,这会增加整体功耗。实现 V_{SHUNT} 所需的BPP电流与工作开关频率成正比,可使用数据手册中的 I_{s1} 和 I_{s2} 参数进行内推。

推荐使用具有低结电容的玻璃钝化标准恢复整流二极管,因为快速或超快速二极管所具备的快速恢复特性,会导致更高的辐射EMI。

推荐使用电容电压额定值是电容两端最高电压的1.2倍且至少为22μF的 铝质电容。当输出电压为最高额定输出电压、输出带负载且输入电压为 最低电压时,通常会在此电容两端产生最高的电压。对于具有28V输出的设计,推荐使用额定电压至少为80V、500mW的BJT。

输入欠压及过压保护

从输入欠压/过压引脚连接到DC总线的电阻可检测输入电压,提供输入欠压及过压保护。对于典型的通用输入应用,建议使用2或3个1206封装的电阻,每个电阻的阻值为1.2至2 $M\Omega$, V引脚的总阻值为3.6至4 $M\Omega$ 。

InnoSwitch5-Pro IC具有初级检测输入过压保护功能,当流经V引脚的电流超过UV/OV引脚输入过压阈值(I_{OV+})且具有一个抗尖峰脉冲滤波(t_{OV+})时,该功能可用于抑制进一步的开关周期。当流经V引脚的电流降至UV/OV引脚输入过压恢复阈值(I_{OV-})以下时,开关恢复。使用如图28所示的修改后电路配置可以实现快速AC复位。输入供电断开后,电容C_S的电压会快速下降,这会减小流入InnoSwitch5-Pro IC输入电压监测引脚的电流并复位InnoSwitch5-Pro IC控制器。通过将V引脚短接至InnoSwitch5-Pro IC的源极引脚,可以禁止输入UV/OV保护功能。

初级侧钳位

在图27中,一旦初级开关关断,漏感能量就会通过电阻R10和R11输送到钳位电容C7。随后,这些能量在并联电阻R5和R6上以热量的形式耗散。推荐使用具有低结电容的玻璃钝化标准恢复整流二极管,因为快速或超快速二极管所具备的快速恢复特性,会导致更高的辐射EMI。

增加**C7**电容的值有助于更好地钳位初级开关的漏极电压。但值得注意的 是,这也可能导致更大的损耗。

钳位电容的电压额定值必须高于V_{OR}。对于具有28V输出的设计,由于 V_{OR}通常在135V至185V范围内,因此额定电压至少为200V、容值在 1.5nF至3.3nF范围内的1206型电容通常适用于初级RCD钳位电路。除了 减少由于钳位二极管反向恢复引起的振荡之外,电阻R10和R11还有助于改善EMI性能。由于初级开关关断后会有较大的初始尖峰电流流过电阻R10和R11,因此推荐使用阻值在几十欧姆范围内的电阻和1206型的串联钳位电阻。并联电阻R5和R6将存储在钳位电容中的能量以热量的形式耗散。尽管使用低值电阻有助于更好地钳位漏极电压,但这会导致更高的损耗。由于这些电阻中耗散的能量与InnoSwitch5-Pro IC的I_{LIM}的平方成正比,因此对于I_{LIM}较高的器件,建议使用2个或更多的1206封装电阻。

对于采用通用AC输入的28V输出设计,通常使用反向关断电压为200V、额定功率为3.3W或连续功率为5W的TVS即可。

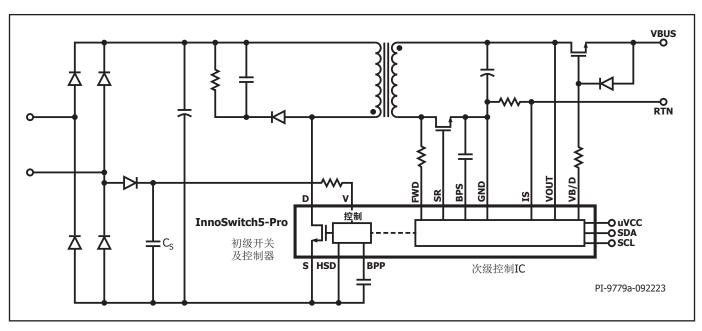


图 28. 快速AC复位线路

InnoSwitch5-Pro次级侧电路的元件

次级旁路引脚 – 去耦电容

应使用一个2.2µF、10V/X7R或X5R/0805或更大型号的多层陶瓷电容对InnoSwitch5-Pro IC的次级旁路引脚去耦。由于次级旁路引脚电压需要在输出电压达到稳压水平之前更早达到4.5V,使用过高的BPS电容值会导致启动时输出电压过冲。低于1.5µF的电容值也不可取,它会导致无法预测的工作情况。电容必须靠近IC引脚放置。建议使用至少10V的电压额定值,以提供足够的BPS电压裕量 并且必须使用0805电容来保证工作中的实际值,因为陶瓷电容的电容量会随着施加的直流电压而显著下降,尤其是对于小型封装SMD(例如0603)而言。因此,不建议使用6.3V/0603/X5U或Z5U类型的MLCC。陶瓷电容的型号名称(例如,来自不同制造商或不同产品系列的X7R、X5R)没有相同的电压系数。建议查看相应的电容数据手册,确保所选电容在4.5V下的电容电压降不会超过20%。为取得最佳效果,应采用X5R或X7R介质的电容。

电源的输出电压为5V或更高时,次级侧控制器的供电电流由IC的输出电压(VOUT)引脚提供,因为该引脚的电压高于次级旁路引脚电压。启动时以及电源的输出电压低于5V时,次级侧控制器的供电电流来自连接至正激引脚的内部电流源。

如果电源在较高的输出电压下工作,则从V_{our}获得次级偏置电源时,内部线性稳压器将产生显著损耗,从而导致次级侧结温升高。可以从具有合适的整流器和滤波器的变压器提供偏置绕组,以在最高输出电压下向BPS引脚提供所需的电流。该偏置电源可能无法提供较低输出电压下所需的电流,因为它随输出变化并且应大于V_{BPS}(4.5V)。次级偏置绕组圈数与次级绕组圈数之比决定输出电压,超过该电压,偏置绕组电流开始向BPS引脚供电。建议为位于BPS电容和次级偏置绕组滤波电容之间的电阻选择合适的值,以确保在28V满载条件下至少有7mA的电流流入BPS引脚。

正激引脚电阻

推荐使用 47Ω 的5%电阻,以确保足够的IC供电电流。不应使用过低的电阻值,因为这会影响器件的工作,比如同步整流器驱动的时序。可以使用高达 $1k\Omega$ 的更高电阻值,与可选的并联快速恢复二极管配合使用,以调整同步整流门极驱动占空比。二极管阳极连接到变压器绕组,而阴极连接到正激引脚。图29、30、31及32所示为不可接受和可接受的正激引脚电压波形的示例。 V_0 是同步整流管两端的正向电压降。

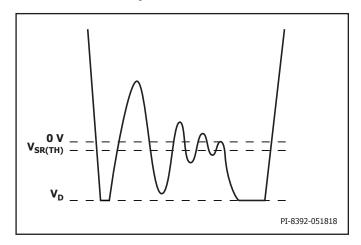


图 29. 握手后反激周期中SR开关导通期间不可接受的正激引脚电压波形

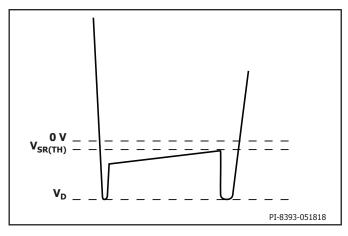


图 30. 握手后反激周期中SR开关导通期间可接受的正激引脚电压波形

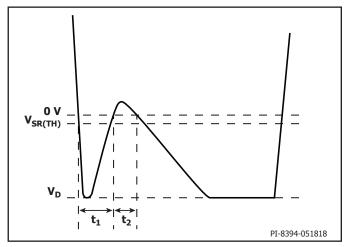


图 31. 握手前反激周期中体二极管导通期间不可接受的正激引脚电压波形

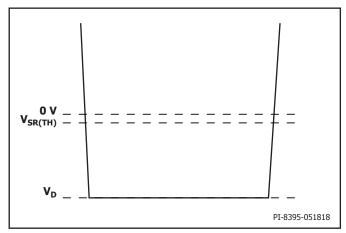


图 32. 握手前反激周期中体二极管导通期间可接受的正激引脚电压波形

同步整流管FET

虽然使用简单的二极管整流器足以满足输出的需要,但使用SR FET能显著提高工作效率,进而满足欧洲CoC和美国能源部(DoE)能效标准要求。SR FET门极应直接连接至InnoSwitch5-Pro IC的同步整流管驱动引脚(不应在SR FET门极电路连接任何额外的电阻)。在启动期间初级次级握手后,次级控制器接管,次级侧控制器在反激周期开始时立即导通SR FET。一旦SR FET的 $V_{\rm DS}$ 幅值低于 $V_{\rm SR(TH)}$,SR FET就会关断。一旦SR FET关断,反激周期的剩余部分期间电流将换向至SR FET的体二极管。需要注意的是,涉及SR漏极引脚、FWD电阻、FWD引脚的FWD走线长度决定了SR FET的占空比。如果该走线较长,SR FET可能会在反激周期中比预期提前关断,导致二极管导通时间延长,从而降低效率。在其他情况下,当SR FET的导通时间略长于次级导通时间,导致次级电流为负时,建议增加连接到FWD引脚的电阻阻值(最高 $1k\Omega$),直到观测到所需的行为。

下表提供了针对不同设计的SR FET的 $R_{DS(ON)}$ 选择的建议。对于额定功率为100W或以上的设计,建议并联使用2个SR FET,以降低有效 $R_{DS(ON)}$,从而在相同次级有效值电流下提高效率并降低SR FET管温度。

输出	FET R _{DS(ON)}
20V/3A	7m Ω
28V/3A及以上	3mΩ或更低

表 12. 针对不同设计推荐的SR FET R_{DS(ON)}

SR FET驱动器使用次级旁路引脚作为供电端,该电压的典型值为4.5V。 因此不太适合使用高开通阈值电压的MOSFET; 开通阈值电压在1.5V至 2.5V之间的MOSFET较为适合,但是也可以使用开通阈值电压(绝对最 大值)高达4V的开关,只要其数据手册规定了在4.5V门极电压下整个温 度范围的R_{DS(ON)}数值即可。

对于采用InnoSwitch5-Pro IC的设计,通常不需要跨SR FET使用肖特基二极管。SR FET门源极电压的上升和下降时间取决于其门源极电容容值以及InnoSwitch5-Pro IC的驱动强度。因此,当使用两个并联的SR FET(而不是一个)时,这些时间会更长。

与基于变压器圈数比、输入和输出电压以及SR FET关断电压尖峰的预期最差情况峰值反向电压(PIV)相比,SR FET漏源极电压额定值应具有足够的裕量。额定电压120V的FET适用于输出电压为20V及以上的设计。

输出绕组的漏感与SR FET电容(C_{oss})之间的相互作用会在绕组的电压反向(由于初级开关导通)时电压波形出现振荡。这种振荡可通过使用连接于SR FET两端的RC或RCD缓冲器进行抑制。缓冲器电阻阻值范围可介于5 Ω 至47 Ω 之间(较高的电阻值会导致比较明显的效率下降)。必须选择合适的电阻数量及其器件封装,以便它们能够处理缓冲电路中的功率损耗。开关二极管也可与缓冲电阻并联,以最大限度地降低其耗散。大部分设计当中均可采用220pF至3.3nF的X7R电容。对于具有较高 I_{LM} 的设计,为了降低启动期间的SR FET电压应力,除了上面所述的SR缓冲电路之外,还建议在次级绕组上使用RCD钳位。在这个附加钳位电路中,二极管阳极连接到SR FET的漏极引脚,然后是一个串联到二极管的并联RC电路。推荐使用5 Ω 00P的200V额定电压的1206型电容。

输出电容

低ESR铝电解电容适用于大多数高频率反激式开关电源,但铝聚合物固态电容已获得非常广泛的应用,这是由于它们紧凑的尺寸、稳定的温度特性、极低的ESR以及较高的RMS纹波电流额定值。使用这些电容可以设计出超紧凑的充电器和适配器。

通常,对应每一个安培的输出电流使用200μF至300μF的铝聚合物电容即可。其他影响电容选择的因素是输出纹波。确保电容电压额定值高于最高输出电压且留有足够的裕量。

输出过载保护

电源可提供的最大功率由设定的 VV_{KP} 与满量程电流限限值的乘积获得。输出电压低于设定的 V_{KP} 阈值时,InnoSwitch5-Pro IC将在达到设定的限流点时对输出电流进行限制。满量程限流点由IS和GND引脚之间的电阻设置。可以通过I²C设定较低的限流点值。只要输出电压超过设定的 V_{KP} 阈值,InnoSwitch5-Pro IC就会提供恒功率特性。设定限流点内的负载电流增大将导致输出电压下降,以使输出电压与输出电流的乘积等于 V_{KP} 与满量程限流点的乘积所设置的最大功率。

uVCC引脚上的去耦电容

建议在uVCC和GND引脚之间至少放置一个2.2μF的X7R陶瓷电容。对于外部微控制器由uVCC供电的28V输出设计,建议从次级偏置绕组到uVCC之间使用可选的线性稳压电路。

SDA和SCL引脚的上拉电阻

建议在SDA和SCL引脚与uVCC引脚之间各连接一个 $4.7k\Omega$ 的上拉电阻,以实现400kHz频率的通信。上拉电阻的最大值取决于SDA/SCL线路和I²C主控所呈现的电容。假设总电容为20pF,到 V_{II} 阈值的电压升高时间与SCL时钟频率的函数如表11所示。

VOUT引脚上的去耦电容

建议在靠近VOUT引脚的地方放置一个1µF-2.2µF的X7R陶瓷电容。建议将BPS、uVCC和VOUT引脚去耦电容的地连接在一起并位于靠近IC的位置,同时通过细走线与电源GND进行开尔文连接,以确保良好的抗噪能力。

IS至GND引脚电流检测电阻

该检测电阻的选择使所需的满量程电流在IS和GND引脚之间产生32mV的电压降。建议使用公差为1%或更低的电阻。该检测电阻必须与IS引脚滤波电路(由一个 10Ω 电阻和至少 1μ F的电容组成)建立开尔文连接,并且最好尽可能靠近InnoSwitch5-Pro IC的引脚,以实现精确的电流检测和恒流调节。

输出去耦电容

陶瓷输出去耦电容有助于改善ESD性能。该电容必须尽可能靠近电源的输出端子或Type-C连接器。

母线开关

建议采用低R_{DS(ON)}的N沟道FET母线开关,以降低高负载电流对效率的影响。FET不必是逻辑级FET。VB/D引脚通常可以提供比V_{our}高7V的电压,因此可以充分增强门极阈值为4V的FET。FET漏源极电压额定值必须与电源的最大输出电压留有足够的裕量。对于具有28V输出的设计,推荐使用额定电压至少为40V的FET。

母线放电

母线放电的电阻值根据放电时间要求进行选择,以将Type-C连接器处的输出电压降至0V(即需要断开母线开关时),同时考虑VB/D引脚内部电流放电限值 $I_{\text{B/D(DS)}}$ 为50mA。建议对28V设计使用 $1k\Omega$ 的电阻,以满足USB PD放电时间规范,同时也提供足够的 $I_{\text{B/D(DS)}}$ 裕量。建议在母线开关源极到门极引脚上串联一个通用二极管,以实现单向电流。

外部控制器

需要一个外部控制器通过SDA和SCL线路将I²C命令发送到InnoSwitch5-Pro IC。对于独立应用,外部控制器可以从InnoSwitch5-Pro IC的uVCC 引脚获取电源。它应该能够在供电电压低至2.8V的情况下维持工作。

电路板布局建议

参见图33和34了解InnoSwitch5-Pro电源的建议电路板布局。

苗占控协

在输入滤波电容与连接源极引脚的铺铜区域使用单一接地点。

旁路电容

初级旁路和次级旁路引脚电容必须分别直接靠近初级旁路-源极引脚和次级旁路-次级接地引脚放置,与这些电容的连接应采用短走线方式。

初级环路面积

连接输入滤波电容、变压器初级及IC的初级环路面积应尽可能小。

IS至GND引脚电容

建议在InnoSwitch5-Pro IC的IS和GND引脚之间使用1μF或更高的陶瓷电容,以实现精确的恒流调整。

初级钳位电路

为了降低初级开关管漏极上的与漏感相关电压应力以及EMI,请尽量减小涉及钳位元件到变压器和Innoswitch5-Pro IC的环路。

散热注意事项

源极引脚都由内部连接至IC的铜制基板,是器件散热的主要途径。因此,源极引脚都应连接到IC下的铺铜区域,不但作为单点接地,还可作为散热片使用。因它连接到电位稳定的源极节点,可以将这个区域的面积扩大以使IC实现良好的散热,并且不降低EMI性能。输出SR开关也是一样,尽量增大连接封装引脚的PCB面积,以帮助SR开关散热。

应在电路板上提供足够的铺铜区域,以使IC温度安全地处于绝对最大限值以下。建议铺铜区域(IC的源极引脚焊接在此)面积应足够大,以使电源在满额定负载和最低额定输入AC供电电压下工作时IC温度保持在110°C以下。

Y电容

应将Y电容直接放置在初级输入滤波电容正极和变压器次级的正输出或返回极端子之间。这样走线可使高幅共模浪涌电流远离IC。请注意,如果输入π型滤波器(C、L及C)用作EMI滤波器,那么滤波器内的电感应放置在输入滤波电容的负极之间。

输出SR FET

为达到最佳性能,由次级绕组、输出SR FET及输出滤波电容所组成的环路区域面积应最小。

IS-GND引脚,检测电阻走线

建议由电流检测电阻至IS-GND引脚的走线在电流检测电阻的两个节点上 形成星形连接,以实现精确的CC设置点。IS-GND检测走线应在电流检 测电阻的焊盘最内侧,以避免测量电阻的焊盘或进出检测电阻的负载走 线上的任何电压降。

uVCC、SDA和SCL引脚

至SDA和SCL引脚的走线应远离任何噪声节点或走线。如果可能,屏蔽 走线应与SDA和SCL线路平行。

静电放电(ESD)

应在初级侧和次级侧电路之间保持足够的电气间隙(>8mm),以易于满足任何ESD/耐压测试要求。放电间隙最好直接位于正输出端与其中一个AC输入之间。在此配置中,6.2mm放电间隙通常足以满足众多适用安全标准的爬电距离和电气间隙要求。该距离小于初级与次级之间的电气间隙,因为放电间隙之间所施加的电压不超过AC输入的峰值。

如果有用于USB PD通信的控制器,则控制器的接地应该连接到InnoSwitch5-Pro IC的GND引脚,而不是Type C连接器的GND引脚,这有助于提高ESD性能。不过,如果在其上有单独的子板与控制器IC连接,并且接地路径变长,则可以将控制器IC的接地连接到更靠近USB连接器GND引脚的位置,这有助于在USB PD符合性测试期间获得眼图。

漏极节点

漏极开关节点是主要噪声源。因此,连接漏极节点的元件应靠近IC放置并远离敏感的反馈电路。钳位电路元件应远离初级旁路引脚,走线长度应尽量短。

由输入整流滤波器电容、初级绕组和IC初级侧开关形成的环路的面积应 尽可能的小。

布板示例

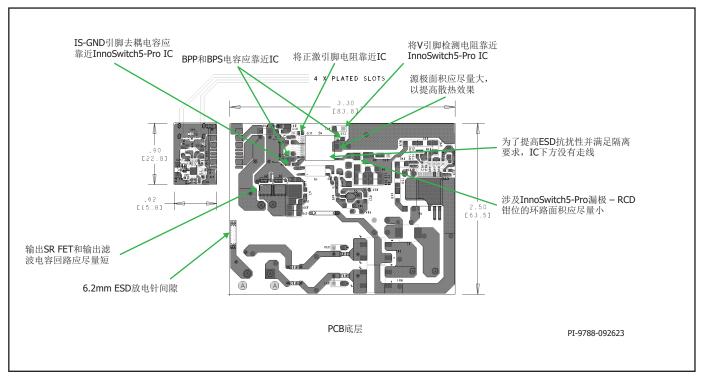


图 33. PCB布板建议 - 底层

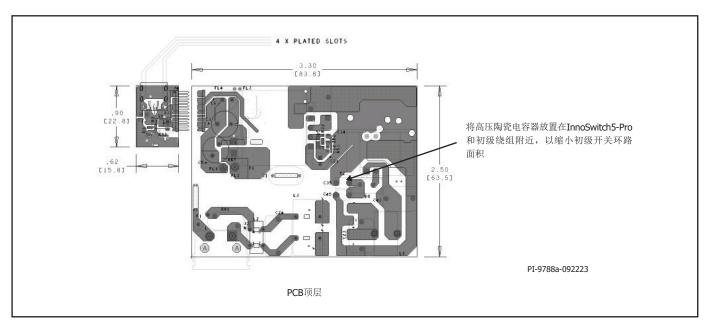


图 34. PCB布板建议 - 顶层

降低EMI的建议

- 1. 合理的元件位置以及初级和次级功率电路所形成的小环路面积有助于降低辐射及传导EMI。应注意确保环路面积尽量小。
- 初级RCD钳位电路中与二极管串联的电阻有助于抑制振荡,从而有助于抑制EMI。
- 3. 与初级偏置绕组串联的电阻有助于降低辐射EMI。
- 4. 电源输入端通常需要使用共模扼流圈来充分衰减共模噪声。然而, 在变压器上使用屏蔽绕组可以达到同样的目的。屏蔽绕组还可以与 输入端的共模滤波电感配合使用,以实现更佳的传导及辐射EMI 裕量。
- 5. 调整SR开关RC缓冲器元件值有助于降低高频辐射及传导EMI。
- 6. 可以在输入整流电路使用一个由差模电感和电容组成的⊓型滤波器, 以降低低频差模EMI。
- 7. 电源输出端并联一个1µF陶瓷电容有助于降低辐射EMI。

变压器设计必须确保电源可在最低输入电压下提供额定功率。整流后DC 母线上的最低电压取决于所采用滤波电容的电容值。推荐至少采用 2μF/W的值,始终使DC母线电压高于70V,但3μF/W可提供更多的裕量。应测量DC母线间的纹波,以确认变压器初级绕组电感选择的设计计算。PI Expert Online (https://piexpertonline.power.com/)可用于轻松创建基于InnoSwitch5-Pro的设计。

开关频率(f_{sw})

InnoSwitch5-Pro IC的独特特性是,设计者可以将满载开关频率设置在50kHz至130kHz的范围内。如果使用较小的变压器,满载开关频率可以设置在130kHz。设置满载开关频率时,必须考虑初级电感和峰值电流公差,确保平均开关频率不超过过载检测频率f_{ovt}的最小阈值,以防止触发自动重启动。

表13提供了基于器件型号的开关频率选择指南。这些值是基于内部高压 开关和变压器尺寸权衡考虑总器件损耗的结果。

器件	推荐满载开关频率
INN5375F	90-110kHz
INN5377F	70-90kHz
INN5477F	60-80kHz

表 13. 不同器件的推荐开关频率*

* 大型号器件具有较低的R_{DS(ON)}和较高的I_{LIM}。它们适用于更高功率的应用(>75W)。根据IEC标准,这些设计必须满足谐波电流要求,因此需要使用功率因数校正前级电路。对于这些设计,假设DC-DC部分的输入电压在380-400VDC范围内。

反射输出电压, V_{OR} (V)

该参数是在次级导通时间内(通过变压器圈数比)从次级绕组反射的初级绕组电压。为充分利用ZVS特性和确保最平坦的输入电压/负载效率曲线,设置反射输出电压 (V_{OR}) 时,对于通用输入电压设计,在最小输入电压下应满足 $K_{D}=0.7$,而对于输入电压仅限于高压输入的设计应满足 $K_{D}=1$ 。

为达到设计优化的目的,应考虑如下因素:

- 1. 较高的 V_{oR} 允许在最低电压 V_{MIN} 时获得更高的输出功率,这会降低输入电容值和提高给定InnoSwitch5-Pro器件的输出功率能力。
- 2. 较高的Vop还可以降低输出二极管和SR开关的电压应力。
- 3. 较高的Vop会增加漏感,从而降低电源效率。
- 4. 较高的 V_{oR} 会增大次级侧的峰值电流及RMS电流,从而增加次级侧的铜损和二极管损耗。

但也有一些例外情况。输出电流非常大时,应降低V_{OR}以获得最高效率。输出电压高于15V时,应提高V_{OR},使输出同步整流管的反向峰值电压维持在可接受的水平。

纹波电流与峰值电流的比率,KP

 K_p 小于1表示连续导通模式, K_p 为纹波电流与峰值初极电流的比值(参见图35)。

$$K_{p} \equiv K_{p} = I_{p} / I_{p}$$

 K_p 值大于1表示断续导通模式(参见图36)。此时, K_p 是初级开关关断时间与次级二极管导通时间的比值。

$$K_{p} \equiv K_{DP} = (1 - D) \times T / t = V_{OR} \times (1 - D_{MAX}) / ((V_{MIN} - V_{DS}) \times D_{MAX})$$

推荐对InnoSwitch5-Pro设计采用在最低预期DC母线电压下 $K_p \ge 0.7$ 的值。由于使用InnoSwitch5-Pro IC的SR-ZVS可确保初级开关仅在DCM周期内进行ZVS导通(即 $K_p \ge 1$),因此建议设计在高输入电压时完全工作于DCM模式。确保这一点还能降低SR FET的电压应力。在SR-ZVS工作时,建议 $K_p \ge 1.2$ (至少在高输入电压时),以充分利用这一特性,从而实现ZVS开通。

对于要求具有宽输出电压范围的典型USB PD和快速充电设计, K_p 将随着输出电压的变化发生明显变化。 K_p 将在输出电压升高时增大,在输出电压降低时减小。PIXIs设计表格可有效优化 K_p 、初级绕组电感、变压器圈数比和工作频率的选择,同时确保提供合适的设计裕量。

磁芯类型

合适磁芯的选择取决于电源外壳的物理尺寸限制。建议应仅使用低损耗 磁芯以降低温升。

安全边距,M (mm)

对于要求在初级和次级之间进行安全隔离但不使用三层绝缘线的设计,变压器骨架两侧的安全边距宽度非常重要。对于通用输入电压设计,总的边距宽度通常应为6.2mm - 绕组每侧为3.1mm。对于垂直骨架,骨架两端的安全边距可以不是对称的。但如果总的边距宽度应为6.2mm,

那么实际边距将仅设在骨架一侧。对于使用三层绝缘线的设计,为了满足所要求的爬电距离,还是有必要增加一个小的安全边距。对于每个磁芯往往有多种骨架与其相配,而每种骨架有不同的外形尺寸。请参照骨架的数据手册或寻求指导以确定所需的安全边距宽度。由于安全边距减

少了绕组绕制的可利用面积,因此对于尺寸较小的磁芯绕制面积将不成比例地减小。对于采用InnoSwitch5-Pro IC的紧凑型电源设计,建议次级绕组使用三层绝缘线,这样就无需安全边距。

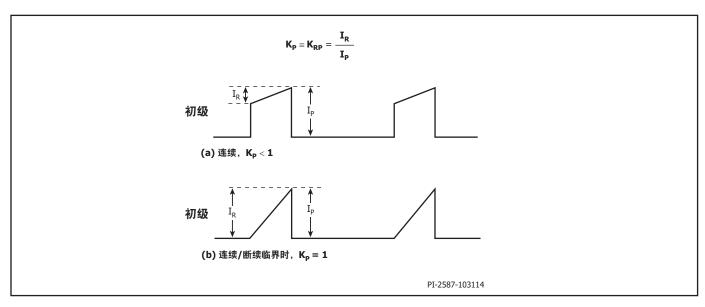


图 35. 连续导通模式电流波形, $K_p \le 1$ 。SR-ZVS模式将自动在CCM周期内禁止

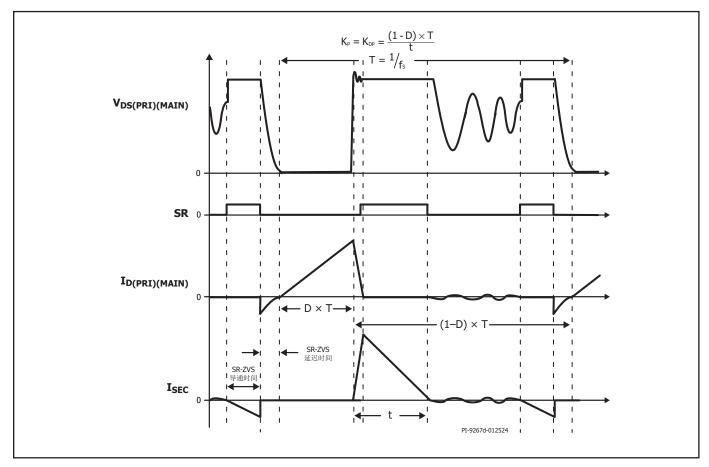


图 36. 在高输入电压下的断续导通模式电流波形, $K_p>1$ 。SR-ZVS导通和延迟时间包含在初级关断持续时间内。

初级层数、L

初级绕组的层数应在1层到3层之间。一般来讲,应使用最少的层数,从而满足初级绕组的电流密度(CMA)限制。≥200Cmils/Amp的值可用作大部分设计的起始值。根据温升要求不同可采用更高的数值。建议尽量减少漏感,以降低初级开关电压应力。大于三层的设计也是可行的,但要考虑到漏感的增加及骨架内绕线窗口高度的限制。

最大工作磁通密度, $\mathbf{B}_{\mathbf{M}}$ (高斯)

为了限制最差输出动态和输出短路时的峰值磁通密度,建议峰值器件限流点下(频率180kHz)的最大磁通密度为3800高斯。在启动及输出短路情况下输出电压很低,在开关关断期间,变压器的磁通复位不足,使得变压器的磁通密度会累积到超过正常工作时的水平。而一旦选择了具有内置保护特性的InnoSwitch5-Pro IC器件,其峰值限流点也就固定了。在此限流点的磁通密度选择3800高斯,可以保证在启动及输出短路情况下磁芯不会饱和。

变压器初级电感量(LP)

一旦确定了最低工作输入电压、满载开关频率和所要求的V_{OR},即可计算变压器初级电感量。PIXIs设计表格可用来辅助变压器设计。

快速设计校验

对于任何使用InnoSwitch5-Pro的电源,都应经过全面测试以确保在最差条件下元件限值没有超过规定范围。

作为最低要求,强烈建议进行如下测试:

- 1. 最大漏极电压-在正常工作和启动时,检查确认InnoSwitch5-Pro IC 和SR FET的V_{DS}在最高输入电压和峰值(过载)输出功率下没有超过击穿电压的90%。
- 2. 最大漏极电流 在最高环境温度、最大输入电压及峰值输出(过载) 功率情况下,观察启动时的漏极电流波形,检验是否出现变压器饱 和的征兆和过大的前沿电流尖峰。在稳态工作下重复测试,确认前 沿电流尖峰在t_{LEB(MIN)}结束时低于I_{LIMIT(MIN)}。在任何条件下,初级开关 的最大漏极电流应低于规定的绝对最大额定值。

- 3. 温升检查 在规定的最大输出功率、最小输入电压及最高环境温度情况下,检查InnoSwitch5-Pro IC、变压器、输出SR FET及输出电容的温度没有超标。应有足够的温度裕量以保证InnoSwitch5-Pro IC不会因为元件与元件间R_{DS(ON)}的差异而引起过热问题出现。
- 4. 建议在低压输入及最大输出功率的情况下,InnoSwitch5-Pro IC源极 引脚的最高温度不高于110℃,这样就可以适应上述参数的变化。

使用PowiGaN器件时的设计注意事项

对于反激变换器设计,IC漏极引脚的典型电压波形如图37所示。

V_{OR}是次级导通时初级绕组上的反射输出电压。V_{BUS}是连接变压器初级绕组一端的直流电压。初级开关的峰值漏极电压为V_{BUS}与V_{OR}的总和。在所有正常工作条件下,都应选择合适的V_{OR}和钳位电压V_{CLM},以使峰值漏极电压低于650V。这提供了足够的裕量,可确保在异常瞬态工作条件下,输入电压瞬变(例如输入电压浪涌)导致电压偶尔升高时,峰值漏极电压仍能保持在远低于750V的水平。这样可确保出色的长期可靠性和设计裕量。

为充分利用ZVS特性和确保最平坦的输入电压/负载效率曲线,设置反射输出电压(V_{OR})时,对于通用输入电压设计,在最小输入电压下应满足 $K_{o} = 0.7$ 而对于输入电压仅限于高压输入的设计应满足 $K_{o} \geq 1$ 。

为达到设计优化的目的,应考虑如下因素:

- 1. 较高的 V_{oR} 允许在最低电压 V_{MIN} 时获得更高的输出功率,这会降低输入电容值和提高给定PowiGaN器件的输出功率能力。
- 2. 较高的Vog还可以降低输出二极管和SR FET的电压应力。

较高的 V_{oR} 会增大次级侧的峰值电流及RMS电流,从而增加次级侧的铜损和二极管损耗。

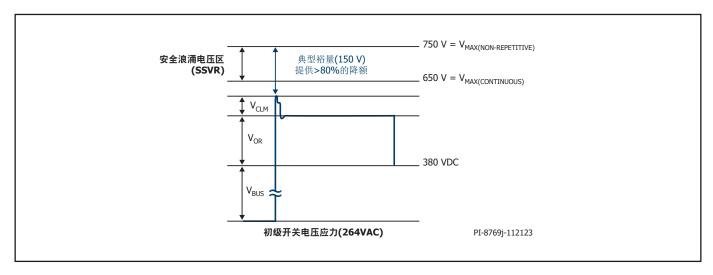


图 37. 264VAC输入电压的峰值漏极电压

但也有一些例外情况。输出电流非常大时,应降低 V_{OR} 以获得最高效率。输出电压高于15V时,应提高 V_{OR} ,使输出同步整流管的反向峰值电压维持在可接受的水平。 V_{OR} 的选择会影响工作效率,应谨慎选择。

表14显示了实现最佳性能的典型V_{OR}范围:

输出电压	V _{or} 的最佳范围
5V	45-70
12V	80-120
15V	100-135
20V	120-160
28V	135-180

表 14. 有利于实现最佳性能的推荐V_{OR}

绝对最大额定值1,2

漏极引脚电压6:	PowiGaN器件INN537xF PowiGaN器件INN547xF	0.3V到750V
	PowiGaN器件INN5x96F	
漏极引脚峰值电流:	PowiGaN器件INN5x75F. PowiGaN器件INN5x76F.	
	PowiGaN器件INN5x77F.	
	PowiGaN器件INN5396F	
	PowiGaN器件 INN5496F	
BPP/BPS引脚电压		
SCI、SDA、uVCC引	脚电压	-0.3到6V
uVCC引脚电流5	FT 13.22	12mA
SR引脚电压		-0.3V到6V
V引脚电压		0.3V到650V
IS引脚电压		0.3V到0.3V ⁸
贮存温度		65到150℃
环境温度		40到105℃
引线温度4		260°C

备注:

- 1. 所有电压都是以T₄ = 25℃时的源极和次级接地端为参考点。
- 2. 在短时间内施加器件允许的最大额定值不会引起产品永久性的损 坏。但长时间用在器件允许的最大额定值时,会对产品的可靠性造 成影响。
- 3. 通常由内部电路限制。
- 4. 在距壳体1/16英寸处测量,持续时间5秒。
- 5. 仅在5V输出时, uVCC引脚可以提供40mA的最大电流, 持续0.5秒。
- 6. PowiGaN器件: INN5x7xF 最大漏极电压(非重复脉冲);用于降额计算.......0.3V到750V。
- 7. 有关最大允许电压和电流的对应关系,请参见图42。
- 8. 小于500µs的绝对最大电压为3V。
- 9. PowiGaN器件: INN5x96F 最大连续漏极电压-0.3到725V。 最大漏极电压(非重复脉冲).....-0.3到900V。

热阻 北四

热阻:	INN5x75F
	$(\theta_{1\Delta})$ 70 °C/W ² , 64°C/W ³
	(θ ₁₀)21 °C/W ¹
	INN5x77F
	$(\theta_{1\Delta})$ 55 °C/W ² , 51°C/W ³
	16.00.04

.....21 °C/W¹ °C/W2, 51°C/W3 INN5x96F (θ_{1A}) 71 °C/W², 66°C/W³

备注:

- 1. 壳体温度在塑封体顶部测量。
- 2. 焊在0.36平方英寸(232mm2)、2盎司(610g/m2)铜箔区域。
- 3. 焊在1.0平方英寸(645mm2)、2盎司(610g/m2)铜箔区域。

参数	符号	条件 源极 = 0V T _J = -40℃到12 (除非另有说明	最小值	典型值	最大值	单位	
控制功能							
启动开关频率	f _{sw}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$			25	27	kHz
调制频率	f _M	$T_{J} = 25^{\circ}C_{s}$ $f_{SW} = 100$ kHz			1.25		kHz
最大导通时间	t _{ON(MAX)}	T ₃ = 25°C			16.5		μs
	I _{S1}	V _{BPP} = V _{BPP} + 0.: (开关管停止开 <i>并</i> T _J = 25°C	1V (÷)		300	460	μΑ
			INN5375F		3.2	3.7	
			INN5376F		4.29	5.15	
BPP供电电流		V = V + 0.1V	INN5377F		4.3	5.16	
,,, 0 000	T	V _{BPP} = V _{BPP} + 0.1V (器件开关频率	INN5396F		4.38		A
	I_{S2}	180kHz)	INN5475F		2.96	3.55	mA
		T _J = 25°C	INN5476F		4.2	5.04	
			INN5477F		4.29	5.15	
			INN5496F		4.36		
BPP引脚充电电流	I_{CH1}	$V_{BP} = 0V, T_{J} = 25$	5°C		-1.35		m A
BPP51脚兀电电流	I _{CH2}	V _{BP} = 4V, T _J = 25°C			-4.65		mA
3PP引脚电压	V _{BPP}	T ₁ = 25°C		4.8	5.00	5.16	V
3PP引脚电压滞回	V _{BPP(H)}	T ₃ = 25°C			0.5		V
BPP分流电压	V _{SHUNT}	$I_{BPP} = 2mA$ $T_{J} = 25^{\circ}C$		5.16	5.36	5.7	V
UV/OV引脚电压缓升阈值	I _{UV+}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$		23.1	25.2	27.5	μΑ
JV/OV引脚电压跌落阈值	I _{UV-}	T ₁ = 25°C		20.5	23	25	μΑ
电压跌落延迟时间	t _{uv-}	T _J = 25°C			35		ms
UV/OV引脚输入过压阈值	I _{ov+}	T ₃ = 25°C		106	115	118	μA
UV/OV引脚输入过压滞回	I _{OV(H)}	T ₃ = 25°C			8		μA
JV/OV引脚输入过压恢复 阈值	I _{OV-}	T ₃ = 25°C		100	107		μА
渝入电压故障保护							
电压引脚输入过压抗尖峰 脉冲滤波	t _{ov+}	T _J = 25°C 见注释B			3		μs

参数	符号	条件 源极 = (T _j = -40℃到 (除非另有i	最小值	典型值	最大值	单位	
电路保护							
		$di/dt = 500 \text{mA/}\mu\text{s}$ $T_{_{J}} = 25^{\circ}\text{C}$	INN5375F	2139	2300	2461	
		$di/dt = 660 \text{mA/}\mu\text{s}$ $T_{_{J}} = 25^{\circ}\text{C}$	INN5376F	2697	2900	3103	
		$di/dt = 770 \text{mA/}\mu\text{s}$ $T_{_{J}} = 25^{\circ}\text{C}$	INN5377F	3162	3400	3638	
标准电流限流点(BPP)	I _{LIMIT} (器件开关	di/dt = 660mA/ μ s T _J = 25°C	INN5396		2900		A
电容 = 0.47μF	频率 100kHz)	di/dt = 1300mA/ μ s T $_{\rm J}$ = 25°C	INN5475F	3534	3800	4066	mA
		di/dt = 1600 mA/ μ s $T_{_{\rm J}} = 25$ °C	INN5476F	3906	4200	4494	
		di/dt = 1700mA/ μ s T _J = 25°C	INN5477F	4278	4600	4922	
		di/dt = 1600 mA/ μ s $T_{_{\mathrm{J}}} = 25$ °C	INN5496F		4200		
		$di/dt = 500 \text{mA/}\mu\text{s}$ $T_{_{J}} = 25^{\circ}\text{C}$	INN5375F	2374	2580	2786	mA
		$di/dt = 660 \text{mA/}\mu\text{s}$ $T_{_{J}} = 25^{\circ}\text{C}$	INN5376F	2990	3250	3510	
		$di/dt = 770 \text{mA/}\mu\text{s}$ $T_{_{J}} = 25^{\circ}\text{C}$	INN5377F	3505	3810	4115	
升高电流限流点(BPP)	I _{LIMIT+1} (器件开关	$di/dt = 660 \text{mA/}\mu\text{s}$ $T_{_{J}} = 25^{\circ}\text{C}$	INN5396F		3250		
电容 = 4.7µF	频率 100kHz)	di/dt = 1300mA/ μ s T _J = 25°C	INN5475F	3919	4260	4601	
		di/dt = 1600 mA/ μ s T $_{_{\mathrm{J}}}$ = 25 °C	INN5476F	4324	4700	5076	
		di/dt = 1700mA/ μ s T _J = 25°C	INN5477F	4738	5150	5562	
		$di/dt = 1600 \text{mA/} \mu \text{s}$ $T_{_{J}} = 25 \text{°C}$	INN5496F		4700		
过载检测频率	f _{ovL}	$T_{_{J}} = 25^{\circ}$	PC -	148	155	161	kHz
旁路引脚锁存关断阈值电流	I_{SD}	$T_{_{J}} = 25^{\circ}$	PC .	6.0	7.5		mA
自动重启动导通时间	t _{AR}	T ₁ = 25°C			82		ms
自动重启动触发跳频时间	t _{AR(SK)}	T ₁ = 25°C 见注释 A			1.3		秒
自动重启动关断时间	t _{AR(OFF)}	$T_{_{\rm J}} = 25^{\circ}$	PC .		2.00		秒
短自动重启动关断时间	t _{AR(OFF)SH}	T ₁ = 25°	PC		0.20		秒

				1			
参数	符号	条件 源极 = 0V T ₁ = -40℃到125℃ (除非另有说明)		最小值	典型值	最大值	单位
输出				1			
		INN5375F	T ₁ = 25°C		0.29	0.39	
		$I_{D} = I_{LIMIT+1}$	T _J = 100°C		0.41	0.54	
		INN5376F	T ₁ = 25°C		0.18	0.28	
		$I_{D} = I_{LIMIT+1}$	T ₁ = 100°C		0.27	0.37	
		INN5377F	T ₃ = 25°C		0.145	0.21	
		$I_{D} = I_{LIMIT+1}$	T _J = 100°C		0.23	0.29	Ω
		INN5396F	T ₃ = 25°C		0.21		
导通电阻	R _{DS(ON)}	$I_{D} = I_{LIMIT+1}$	T _J = 100°C		0.32		
		$INN5475F \\ I_{\rm D} = I_{\rm LIMIT+1}$	T ₃ = 25°C		0.29	0.39	
			T ₃ = 100°C		0.41	0.54	
		$INN5476F$ $I_{\rm D} = I_{\rm LIMIT+1}$	T ₁ = 25°C		0.18	0.28	
			T _J = 100°C		0.27	0.37	-
		INN5477F	T ₁ = 25°C		0.145	0.21	
		$I_{D} = I_{LIMIT+1}$	T _J = 100°C		0.23	0.29	
		INN5496F	T ₁ = 25°C		0.21		
		$I_{D} = I_{LIMIT+1}$	T _J = 100°C		0.32		
	$I_{ extsf{DSS1}}$	V _{BPP} = V _{BPP} + 0.1V V _{DS} = 80%峰值漏极电压 T ₁ = 125°C				200	μΑ
关断状态漏极漏电流	$I_{ extsf{DSS2}}$	$V_{BPP} = V_{BPP} + 0.1V$ $V_{DS} = 325V$ $T_{1} = 25^{\circ}C$			15		μΑ
漏极供电电压		见注释B					V
过温关断	T _{SD}	见注释A		135	142	150	°C
过温关断滞回	T _{SD(H)}	见注释A			70		°C

参数	符号	条件 源极 = 0V T _J = -40℃到125℃ (除非另有说明)	最小值	典型值	最大值	单位
次级				l	l	I
最大次级频率	f _{SREQ}	$T_{\rm J} = 25^{\circ}{\rm C}$	164	180		kHz
最小关断时间	t _{OFF(MIN)}	C _{LOAD} = 5nF(SR使能)		1.9	2.2	μs
启动VOUT引脚调整电压	VOUT _{REG}	T ₃ = 25°C	4.85	5	5.15	V
	V _{OUT(R)}	默认值 = 5V	3.00		30	V
输出电压设定范围	TOL _{vout}	公差 T₁ = 25℃	-3		+3	%
可变输出电压步长	ΔV _{OUT}	T ₃ = 25°C		10		mW
输出电压报回公差	V _{OUT(T)}	T ₃ = 25°C	-3		+3	%
巾 化松山中达	T	0.6 - 1.0 T ₁ = 25°C,见注释C	-5		+5	0/
归一化输出电流	I _{OUT}	0.2 T ₁ = 25°C,见注释C	-15		+15	%
归一化输出电流步长	ΔI_{OUT}	T ₃ = 25°C		0.52		%
最大V/I更新速率	t _{vI}	见注释B		10		ms
I ² C命令之间的最小时间 延迟	t _{DELAY}	见注释B	150			μs
内部限流电压阈值	$I_{\text{SV(TH)}}$	T ₁ = 25℃ 跨外部IS至GND引脚电阻 见注释F		32		mV
输出线压降补偿(CDC)设定 范围	ϕ_{CD}	T ₃ = 25°C 默认值 = 0V	0		600	mV
CDC公差	TOLφ _{CD}	$CDC \ge 100mV$ $T_{J} = 25^{\circ}C$	-35		+35	mV
CDC设定步长	$\Delta \phi_{\sf CD}$	T ₃ = 25°C		50		mV
输出过压设定范围	V _{OVA}	默认值 = 6.2V	3.3		40	V
输出过压公差	TOL _{OVA}	T ₃ = 25°C	-3		+3	%
输出过压设定步长	$\Delta V_{\scriptscriptstyle \sf OVA}$			100		mV
输出欠压设定范围	V _{UVA}	默认值 = 3.6V	2.7		40	V
输出欠压公差	TOL _{UVA}	T ₃ = 25°C	-3		+3	%

参数	符号	条件 源极 = 0V T _J = -40℃到125℃ (除非另有说明)		最小值	典型值	最大值	单位
次级 (续上)					1		
输出欠压设定步长	$\Delta V_{_{ m UVA}}$				100		mV
			设定选项1		8		
		T 2500	设定选项2		16		
渝出欠压计时器设定选项	$t_{\scriptscriptstyleUVL}$	T」 = 25℃ 见注释B、E	设定选项3		32		ms
			默认设定选项4		64		
恒定输出功率电压初始阈值 设定范围	V_{KP}	黒	犬认值 = 30V	5.3		30	V
恒定输出功率公差	TOLP _{OUT}	满量	是程电流的85%	-10		+10	%
恒定输出功率电压初始阈值 设定步长	$\Delta V_{_{\mathrm{KP}}}$				100		mV
		T ₁ = 25℃ 见注释B、E	设定选项1		8		- ms
			设定选项2		16		
恒压模式计时器设定选项	t _{cvo}		设定选项3		32		
			设定选项4		64		
		默认设定选项1 见注释B			0.5		- 秒
看门狗计时器	t _{wdt} -	设定选项2,见注释B			1		
		设定选项3,见注释B			2		
/B/D驱动电压	V _{VB/D}	关	长于 VOUT 引脚	4	7		V
/B/D引脚内部电流放电	$I_{\text{B/D(DS)}}$			50			mA
	т		设定选项1 见注释B		40		90
次级过温滞回	T _{SEC(HYS)}		设定选项2 见注释B		60		°C
/OUT引脚泄放电路电流	IVO _{BLD}	VOUT = 5V			270		mA
	μVCC T ₃ = 25°C, 请参	V _{OUT} = 5V, T _J = 25°C,请参	V _{out} = 5V, 10mA < I _{uvcc} ≤40mA, T _J = 25°C, 请参阅绝对最大额定值表中的 注释5		3.6	3.78	V
μVCC供电电压		$V_{\text{OUT}} \ge 3.9V$ $V_{\text{UVCC}} \le 10\text{mA}$ $V_{\text{UVCC}} = 25^{\circ}\text{C}$	3.42	3.6	3.78	V	

参数	符号	条 源极	= 0V	最小值	典型值	最大值	単位
<i>9</i>	14.5	T _J = -40% (除非另	C到 125℃ 有说明)	4X-7-1E	八王匠	40人匠	- -
次级 (续上)							
uVCC引脚输出电阻	R _{uvcc}	$T_j = $	25°C			20	Ω
μVCC复位阈值电压	μVCC _{RST}	见注	释A		2.5	2.65	V
BPS引脚电压	V _{BPS}			4.3	4.5		V
PROFILIMITY TO	7	$T_{_{ m J}}=$ VBUS ${ m T}$			0.7	0.980	^
BPS引脚电流	I _{SNL}	$T_{_{ m J}} = VBUST$		1	1.550	mA	
BPS引脚电流	I _{S2}	$F_{SW} = 180 \text{kHz}$ $T_{J} = 25^{\circ}\text{C}$		7	8.2	9.5	mA
BPS引脚欠压阈值	V _{BPS(UVLO)TH}				3.8	4.0	V
BPS引脚欠压滞回	V _{BPS(UVLO)H}				0.7		V
正激引脚击穿电压	BV _{FWD}			150			V
同步整流管, T _J = 25°C							
SR引脚驱动电压	V _{SR}				4.5		V
SR引脚电压阈值	V _{SR(TH)}				-3		mV
上升时间	t _{R(SR)}	T ₁ = 25°C C _{LOAD} = 2nF 见注释B	10-90%		50		ns
下降时间	t _{F(SR)}	T _J = 25°C C _{LOAD} = 2nF 见注释B	90-10%		30		ns
输出上拉电阻	R _{PU}	$T_{J} = 25^{\circ}C$ $V_{BPS} + 0.1V$ $I_{SR} = 30\text{mA}$			8.9	11.5	
输出下拉电阻	R _{PD}	$T_{_{\mathrm{J}}} = 0$ $V_{_{\mathrm{BPS}}} + 1$	- 0.2V		4.7	5	

参数	符号	条件 源极 = 0V T _J = -40℃到125℃ (除非另有说明)	最小值	典型值	最大值	单位
I ² C母线规格 (SDA和SCL引脚)*见注释B					
SCL时钟频率	$f_{\scriptscriptstyleSCL}$	见注释G	50	400	535	kHz
低电平输入电压	$V_{_{\rm IL}}$		-0.5		0.3 × uVCC	V
高电平输入电压	$V_{\mathtt{IH}}$		0.7 × uVCC		uVCC + 0.5V	V
施密特触发器输入的滞回	V_{HYS}		0.05 × uVCC			V
低电平输出电压 (漏极或集电极开路)	V _{OL}	uVCC >2.8V 3mA下拉电流	0		0.4	V
低电平输出电流	\mathbf{I}_{OL}		3			mA
由V _{IH(MIN)} 至V _{IL(MAX)} 的输出 下降时间	t _{of}	由10pF至400pF的母线电容	-		250	ns
SDA/SCL输入电流	$\mathbf{I}_{_{\mathrm{I}}}$	$(0.1 \times \text{uVCC}) < (\text{V}_{\text{SCL}}/\text{V}_{\text{SDA}}) < (0.9 \times \text{uVCC})$	-1		1	μΑ
SDA/SCL电容容值	C _I		-		10	pF
输入滤波器抑制的尖峰脉冲 宽度	t _{sp}		50			ns
CL时钟的高频率周期	t _{HIGH}	f _{SCL} = 400kHz	0.6			μs
CL时钟的低频率周期	t _{LOW}	f _{SCL} = 400kHz	1.3			μs
串联数据设定时间	t _{su:dat}		100			ns
串联数据维持时间	t _{HD:DAT}		0			秒
有效日期时间	t _{vd:dat}	SCL低至SDA输出有效			0.9	μs
ACK的有效日期时间	t _{vD:ACK}	由SCL低至SDA低为ACK			0.9	μs
开始与停止之间的I ² C母线 空闲时间	t _{BUF}		1.3			μs
I ² C下降时间(同时包括SCL 和SDA)	t _{fCL}				300	ns
I ² C上升时间(同时包括SCL 和SDA)	t _{rCL}				300	ns
I ² C开始或重复开始条件 设定时间	t _{su:sta}		0.6			μs
I ² C开始或重复开始条件 维持时间	t _{HD:STA}		0.6			μs

参数	符号	条件 源极 = 0V T _J = -40℃到125℃ (除非另有说明)	最小值	典型值	最大值	单位
I ² C母线规格(SDA和SCL引脚)*见注释B						
I ² C停止条件设定时间	t _{su:sto}		0.6			μs
容性负载	C _B				400	pF
低电平下的噪声裕量	V _{NL}		0.1 × uVCC			V
高电平下的噪声裕量	V _{NH}		0.1 × uVCC			V
SCL引脚中断计时器	t _{INT(SCL)}	T ₁ = 25°C		50		μs

- A. 此参数依据实际特性得到。
- B. 此参数由设计决定。
- C. 使用公差为1%的电阻。
- D. 为确保获得正确的电流限流值,建议使用0.47μF/4.7μF标称值的电容。此外,BPP电容值的公差应与实际应用环境温度范围内要求的公差相等或 更高。电容值必须介于表征法中规定的最小及最大电容值之间。

BPP引脚额定电容值	BPP电容值公差		
DFF可M級定电台直	最小	最大	
0.47 μF	-60%	+100%	
4.7 μF	-50%	不适用	

建议至少使用10V/0805/X7R SMD MLCC。

- E. 在轻载和空载条件下,平均值型寄存器因为数值稳定期延迟的存在会增加总检测时间。
- F. 此参数只能用于计算电流检测电阻的典型值。CC寄存器(0x98)中设定的值可调整输出电流。公差在归一化输出电流参数 (I_{our}) 中指定。
- G. 在任何SCL时钟频率下工作时,要保证SCL维持低电平时间长过930nS。这可能需要在较高频率下使用非对称SCL时钟(降低占空比)。

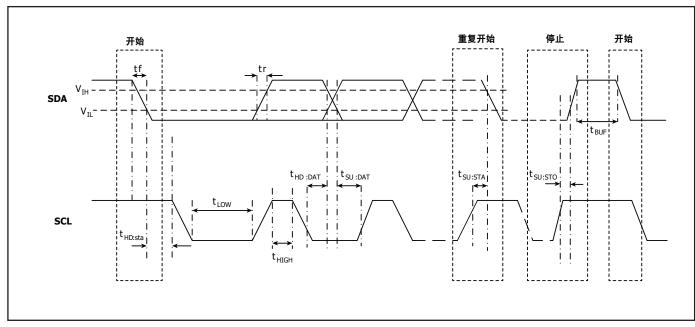


图 38. I2C时序图

典型性能曲线

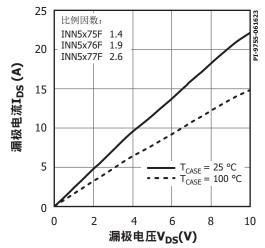


图 39. 输出特性

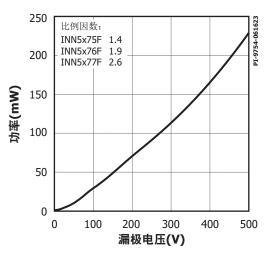


图 41. 漏极电容功率

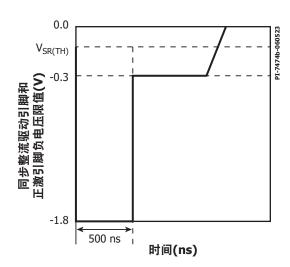


图 43. 同步整流管驱动引脚负电压

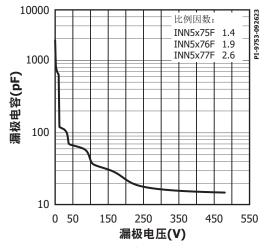


图 40. C_{oss}相对于漏极电压的变化

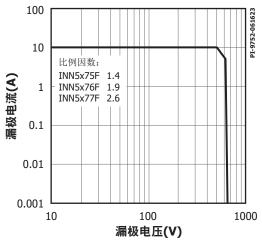


图 42. 最大容许漏极电流相对于漏极电压的变化

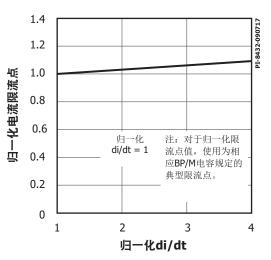
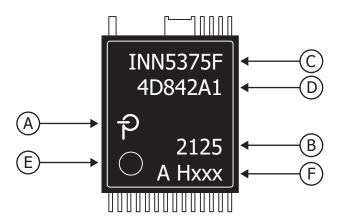



图 44. 标准限流点相对于di/dt的变化

封装标识

InSOP-T28D

- A. Power Integrations注册商标
- B. 封装日期代码(表明年份(YY)的两个数字后紧跟表明周数的两个数字)
- C. 产品识别 (元件号/封装类型)
- D. 批次识别代码
- E. 引脚1指示
- F. 测试批次信息和特性代码

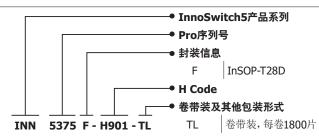
PI-9756-062023

安规认证规格 (安全审批待定)

参数	条件	额定值	单位
UL1577额定值			'
初级侧电流额定值	由引脚(16-19)至引脚24的电流	1.5	А
初级侧功率额定值	T _{AMB} = 25°C (器件安装在插座中, 此时T _{CASE} = 120°C)	1.35	W
次级侧功率额定值	T _{AMB} = 25℃ (器件安装在插座中)	0.125	W
封装特性			
电气间隙		11.4	mm (最小值)
爬电距离		11.4	mm (最小值)
绝缘材料内的间距(DTI)		0.4	mm(最小值)
瞬态隔离电压		6	kV(最小值)
相对漏电起痕指数(CTI)		>600	V

特性代码表

10 17 1 4- 3-3-2			
特性汇总	H901		
\mathbf{I}_{LIM} 可外部设定	是		
过温保护	滞回		
输入过压/欠压保护	己使能		
输入欠压计时器 (35ms或400ms)	35ms		


MSL信息

-ioe in the	
型号	MSL等级
INN5x7xF	3

ESD及闩锁信息

测试	条件	结果
125℃下锁存	JESD78D	> ±100mA或>1.5 × V _{MAX} ,所有引脚
充电器件模型ESD	ANSI/ESDA/JEDEC JS-002-2014	> ±1kV , 所有引脚

元件订购信息

修订版本	注释	日期
С	生产发布。	01/24

有关最新产品信息,请访问: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

- 1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperLCS, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2023, Power Integrations, Inc.

Power Integrations全球销售支持网络

全球总部

5245 Hellyer Avenue San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480

Americas: +1-408-414-9621 e-mail: usasales@power.com

中国 (上海)

徐汇区漕溪北路88号圣爱广场 1601-1603室 上海|中国,200030 电话: +86-21-6354-6323 电子邮箱: chinasales@power.com

中国 (深圳)

南山区科技南八路二号豪威科技大厦 Vasanthanagar 17层 Bangalore-5600 深圳|中国,518057 Phone: +91-80 电话: +86-755-8672-8689 e-mail: indiasal

电子邮箱: chinasales@power.com

德国

(AC-DC/LED/电机控制销售) Einsteinring 37 85609 Dornach/Aschheim Germany Tel: +49-89-5527-39100 e-mail: eurosales@power.com

德国(门极驱动器销售) HellwegForum 3 59469 Ense Germany

Tel: +49-2938-64-39990 e-mail: igbt-driver.sales@power.com

印度

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 e-mail: indiasales@power.com

意大利

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

日本

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi,

Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

韩国

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

新加坡

51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160

e-mail: singaporesales@power.com

台湾地区

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei 11493, Taiwan R.O.C.

Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

英国

CB4 1YG

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge

Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com